Sage Geosystems and Fervo Energy were among the top five on LexisNexis's 10 Most Innovative Startups in Texas report. Photo via sagegeosystems.com

Three Houston companies claimed spots on LexisNexis's 10 Most Innovative Startups in Texas report, with two working in the geothermal energy space.

Sage Geosystems claimed the No. 3 spot on the list, and Fervo Energy followed closely behind at No. 5. Fintech unicorn HighRadius rounded out the list of Houston companies at No. 8.

LexisNexis Intellectual Property Solutions compiled the report. It was based on each company's Patent Asset Index, a proprietary metric from LexisNexis that identifies the strength and value of each company’s patent assets based on factors such as patent quality, geographic scope and size of the portfolio.

Houston tied with Austin, each with three companies represented on the list. Caris Life Sciences, a biotechnology company based in Dallas, claimed the top spot with a Patent Asset Index more than 5 times that of its next competitor, Apptronik, an Austin-based AI-powered humanoid robotics company.

“Texas has always been fertile ground for bold entrepreneurs, and these innovative startups carry that tradition forward with strong businesses based on outstanding patent assets,” Marco Richter, senior director of IP analytics and strategy for LexisNexis Intellectual Property Solutions, said in a release. “These companies have proven their innovation by creating the most valuable patent portfolios in a state that’s known for game-changing inventions and cutting-edge technologies.We are pleased to recognize Texas’ most innovative startups for turning their ideas into patented innovations and look forward to watching them scale, disrupt, and thrive on the foundation they’ve laid today.”

This year's list reflects a range in location and industry. Here's the full list of LexisNexis' 10 Most Innovative Startups in Texas, ranked by patent portfolios.

  1. Caris (Dallas)
  2. Apptronik (Austin)
  3. Sage Geosystems (Houston)
  4. HiddenLayer (Austin)
  5. Fervo Energy (Houston)
  6. Plus One Robotics (San Antonio)
  7. Diligent Robotics (Austin)
  8. HighRadius (Houston)
  9. LTK (Dallas)
  10. Eagle Eye Networks (Austin)

Sage Geosystems has partnered on major geothermal projects with the United States Department of Defense's Defense Innovation Unit, the U.S. Air Force and Meta Platforms. Sage's 3-megawatt commercial EarthStore geothermal energy storage facility in Christine, Texas, was expected to be completed by the end of last year.

Fervo Energy fully contracted its flagship 500 MW geothermal development, Cape Station, this spring. Cape Station is currently one of the world’s largest enhanced geothermal systems (EGS) developments, and the station will begin to deliver electricity to the grid in 2026. The company was recently named North American Company of the Year by research and consulting firm Cleantech Group and came in at No. 6 on Time magazine and Statista’s list of America’s Top GreenTech Companies of 2025. It's now considered a unicorn, meaning its valuation as a private company has surpassed $1 billion.

Meanwhile, HighRadius announced earlier this year that it plans to release a fully autonomous finance platform for the "office of the CFO" by 2027. The company reached unicorn status in 2020.

Shell has entered a 15-year agreement to be the first offtaker to receive electrons from Fervo Energy's flagship geothermal development in Beaver County, Utah, known as Cape Station. Photo via fervoenergy.com

Houston geothermal company secures major power purchase agreement with Shell

under contract

Beginning in 2026, Shell will be able to apply 31 megawatts of 24/7 carbon-free geothermal power to its customers thanks to a new 15-year power purchase agreement with Houston next-gen geothermal development company Fervo Energy.

“This agreement demonstrates that Fervo is stepping up to meet the moment,” Dawn Owens, VP, Head of Development & Commercial Markets at Fervo, said in a news release.

Shell will become the first offtaker to receive electrons from Fervo's flagship geothermal development in Beaver County, Utah’s Phase I of Cape Station. Cape Station is currently one of the world’s largest enhanced geothermal systems (EGS) developments, and the station will begin to deliver electricity to the grid in 2026.

Cape Station will increase from 400 MW to 500 MW, which is considered by the company a major accomplishment due to recent breakthroughs in Fervo’s field development strategy and well design. Fervo is now able to generate more megawatts per well by optimizing well spacing using fiber optic sensing, increasing casing diameter and implementing staggered bench development. This can allow for a 100 MW capacity increase without the need for additional drilling, according to the company.

With the addition of the new Shell deal, all 500 MW of capacity from Fervo’s Cape Station are now fully contracted. The deal also includes existing agreements, like Fervo’s PPAs with Southern California Edison and an expanded deal with Clean Power Alliance that adds 18 MW of carbon-free geothermal energy to the company’s existing PPA with Fervo.

“As customers seek out 24/7 carbon-free energy, geothermal is clearly an essential part of the solution,” Owens said in the release.

XGS Energy plans to “aggressively expand” its team in Houston this year thanks to its latest round of investments. Photo via Getty Images

Houston geothermal company closes $13M in investments to fuel growth

fresh funding

XGS Energy, a California-headquartered geothermal power company with a major presence in Houston, has closed $13 million in new financing that included new investors Aligned Climate Capital, ClearSky, ClimateIC and WovenEarth Ventures, in addition to inside investors.

The company plans to “aggressively expand” its team in Houston this year, according to a news release.

“We are facing global energy supply challenges of unprecedented scale and urgency,” Kevin Kimsa, Managing Partner at ClimateIC, said in the release. “The XGS team is uniquely primed to meet the moment, bringing together innovative technology and leading engineering talent with the deep experience in infrastructure development and financing critical to deploying large-scale energy systems at speed.”

As part of the financing deal, Mano Nazar, ClearSky Senior Advisor and the former Chief Nuclear Officer of NextEra Energy, will join the XGS Energy Board of Directors.

“XGS’s advanced geothermal technology is uniquely positioned to deliver abundant energy to the grid faster than any other baseload energy technology at a time of unprecedented demand for energy resources,” Nazar said in a news release. “We are excited to partner with XGS to deliver on their mission of sustainable, reliable, and scalable geothermal energy.”

XGS is known for its next-gen closed-loop geothermal well architecture. The company saw massive growth in the Houston market last year and recently completed a 100-meter field demonstration in central Texas. The new funding supports the XGS’s multi-gigawatt project pipeline.

The recent financing also builds on an oversubscribed Series A round led by Constellation Technology Ventures, VoLo Earth Ventures, and Valo Ventures that closed last year.

Axel-Pierre Bois, XGS Energy's Chief Technology Officer. Photo courtesy XGS Energy

Geothermal exec on Houston expansion, commercialization and more

Q&A

Challenges in the energy transition often center around two questions: Where will organizations find the resources? And how will projects be financed?

XGS Energy's next-gen closed-loop geothermal well architecture addresses both issues head-on. The California-based company saw massive growth in the Houston market last year and recently completed a 100-meter field demonstration in central Texas, marking a major milestone for its technology's commercialization and potential for scale.

In an interview with EnergyCapital, Axel-Pierre Bois, XGS's Chief Technology Officer, shares what drew him to the geothermal space, why XGS is expanding in Houston and what the company's plans are for the year ahead.

How does XGS Energy's technology address the biggest challenges in geothermal energy?

XGS Energy is developing a geothermal system that decouples geothermal energy from its traditional dependence on water and geology to deliver affordable, clean energy anywhere there is hot rock.

Historically, geothermal resources have been hard to locate, as conventional systems require the overlap of hot rock, porous and permeable geology, and abundant water to produce energy, limiting their potential to a few select hot spots worldwide. Instead of relying on an underground fracture network that drives the geology and water requirements, the base component of XGS’s system is a single well, in which fluid is pumped to a hot rock resource and then returned to the surface through a tube-in-shell design, creating a sealed, closed loop. This allows XGS to produce geothermal energy anywhere where there is hot rock, unlocking terawatt-scale potential in the U.S. alone.

Geothermal systems have also struggled to secure project financing, as many systems have historically faced high levels of unplanned cost risk due to factors including water loss and production uncertainty. XGS’s sealed, closed-loop system ensures that it can provide reliable, predictable electricity throughout its lifespan. XGS also boosts the cost-competitiveness of its system through our major innovation, a proprietary thermally conductive materials system that is installed downhole around each well, increasing the heat transferred to the closed-loop system by 30-50%.

What has drawn you to a career in the geothermal energy space?

I have been in the subsurface industry for over 30 years, developing technical solutions for companies in the fields of geosciences, underground storage, upstream oil and gas, and geothermal heat harvesting to help improve their overall economic, ethical and environmental footprints. In 2009, I founded Curistec, a technology company providing research, engineering and technical services for geomechanics, wellbore integrity, well abandonment, cement design and cement and rock testing. A few years back, Curistec assisted with the Iceland Deep Drilling Project, helping to develop cement formulations for superhot geothermal well applications to enable drilling in high-temperature environments. As I looked toward the future, it became clear that next-generation geothermal technologies would transform the geothermal energy industry and open new markets worldwide. Curistec had been working closely with the XGS Energy team as technology partners for several years, so joining the team directly to help shape the technology development was an exciting opportunity to help develop and deploy a new system to unlock the full terawatt-scale potential of geothermal energy.

Tell us about the 100-meter field demonstration in central Texas completed in 2024 — what all did you and your team learn from the test?

Our 100-meter field demonstration in central Texas marked a significant step in our progress toward deploying geothermal energy in a commercial setting. With this field operation, we successfully demonstrated our ability to mix, pump and place our thermally conductive materials system at a commercial scale, using off-shelf tools and technologies. This was a significant milestone, taking us from theoretical models and laboratory tests to field-scale operations, proving that our novel geothermal system is operationally viable in real-world well conditions.

The completion of the Texas field demonstration advanced XGS into the new wave of geothermal innovators that are putting real steel in the ground. In 2024, we kicked off construction at our commercial-scale demonstration in California and are excited to share updates in the year ahead.

Last year, XGS Energy leased over 10,000 square feet of office space in Memorial City. How has Houston's business community and opportunities benefitted the company?

Houston, the epicenter of the oil and gas industry, has become a hub of energy innovation, offering attractive incentives for growing companies like XGS. The region’s workforce, which is home to some of the best subsurface engineers and operational talent in the energy sector, was a key factor for XGS when we were planning our operational roadmap. This expertise, paired with proximity to our partners in the field services industries, like cementing and drilling, is both a practical and tactical advantage for XGS.

We’ve built a strong technical and operational team here at XGS, with experience from the oil and gas industry, utilities and power project developers. XGS is planning for continued growth in the Houston area, leveraging the region’s leading engineering and operational workforce and its intensifying interest in supporting the energy transition.

What are XGS Energy's goals for 2025?

In 2024, the XGS Energy team made significant progress toward our goal of providing clean, round-the-clock energy with our solid-state geothermal system. In 2025, XGS Energy will be focused on deploying its geothermal system at a commercial scale, starting with the completion of our full-scale prototype in California. XGS will also continue accelerating our commercial traction, expanding our already robust and highly differentiated geothermal resource evaluation toolkit, advancing our global project pipeline, and growing our team to strengthen our operational capability and capacity.

The deal brings Fervo's total funding secured this year to around $600 million. Photo courtesy of Fervo

Houston-based Fervo Energy collects $255M in additional funding

cha-ching

A Houston company that's responding to rising energy demand by harnessing geothermal energy through its technology has again secured millions in funding. The deal brings Fervo's total funding secured this year to around $600 million.

Fervo Energy announced that it has raised $255 million in new funding and capital availability. The $135 million corporate equity round was led by Capricorn’s Technology Impact Fund II with participating investors including Breakthrough Energy Ventures, CalSTRS, Congruent Ventures, CPP Investments, DCVC, Devon Energy, Galvanize Climate Solutions, Liberty Mutual Investments, Mercuria, and Sabanci Climate Ventures.

The funding will go toward supporting Fervo's ongoing and future geothermal projects.

“The demand for 24/7 carbon-free energy is at an all-time high, and Fervo is one of the only companies building large projects that will come online before the end of the decade,” Fervo CEO and Co-Founder Tim Latimer says in a news release. “Investors recognize that Fervo’s ability to get to scale quickly is vital in an evolving market that is seeing unprecedented energy demand from AI and other sources.”

Additionally, Fervo secured a $120 million letter of credit and term loan facility from Mercuria, an independent energy and commodity group that previously invested in the company.

“In surveying power markets across the U.S. today, the need for next-generation geothermal is undeniable,” Brian Falik, group chief investment officer of Mercuria, adds. “We believe in Fervo not just because their EGS approach is cost-effective, commercially viable, and already being deployed at scale, but because they set ambitious targets and consistently deliver.”

In February, Fervo secured $244 million in a financing round led by Devon Energy, and in September, the company received a $100 million bridge loan for the first phase of its ongoing project in Utah. This project, known as Project Cape, represents a 100x growth opportunity for Fervo, as Latimer explained to InnovationMap earlier this year. As of now, Project Cape is fully permitted up to 2 GW and will begin generating electricity in 2026, per the company.

Other wins for Fervo this year include moving into its new headquarters in downtown Houston, securing a power purchase agreement with California, growing its partnership with Google, and being named amongst the year's top inventions by Time magazine.


———

This article originally ran on InnovationMap.

In a recent Energy Tech Startups Podcast episode, Cindy Taff discussed the evolution of Sage GeoSystems, the challenges of scaling hard tech solutions, and the opportunities presented by geothermal and pumped hydro energy storage. Photo courtesy of Sage

Houston founder on driving the future of geothermal energy, storage

now streaming

Cindy Taff, co-founder and CEO of Sage GeoSystems, has emerged as a visionary leader in the energy transition, recently named to Time magazine’s 100 Most Influential Climate Leaders in Business for 2024. Under her leadership, Sage is not only advancing geothermal energy innovation but also redefining how energy storage can support a renewable-powered grid.

In a recent Energy Tech Startups Podcast episode, Taff discussed the evolution of Sage GeoSystems, the challenges of scaling hard tech solutions, and the opportunities presented by geothermal and pumped hydro energy storage. Her insights reflect the unique perspective of a founder bridging oil and gas expertise with renewable energy innovation.

- YouTubeCindy shares how Sage Geosystems is leveraging its oil and gas expertise to develop groundbreaking subsurface pumped hydro ...

Breaking Boundaries with Geopressured Geothermal Systems

Sage GeoSystems is at the forefront of next-generation geothermal energy, advancing Geopressured Geothermal Systems (GGS) that can be deployed in a wide range of geographies. Unlike traditional geothermal systems, which rely on natural water reservoirs near volcanic activity, Sage’s engineered reservoirs allow geothermal energy to be tapped almost anywhere.

“Geothermal energy is no longer restricted to specific conditions,” Taff explained. “Our systems are flexible, scalable, and capable of meeting the needs of energy-intensive applications like data centers—including a recent deal with Meta to deliver 150 megawatts of geothermal power for their facilities.”

This adaptability sets Sage apart, offering a path to reliable, clean energy that can complement intermittent sources like wind and solar. Sage also secured a win in the Energy Transition Business category alongside notable finalists like Amperon and Tierra Climate, underscoring its leadership in innovative energy solutions.

Pivoting Toward Subsurface Energy Storage

While initially focused solely on geothermal, Sage uncovered a transformative opportunity in subsurface pumped hydro energy storage during field trials. Dubbed “upside-down pumped hydro,” the solution provides long-duration energy storage capable of balancing the grid for 17+ hours—far surpassing the capabilities of lithium-ion batteries for extended periods.

“Pumped storage hydropower is a critical piece of the energy puzzle,” Taff emphasized. By storing energy during off-peak times and releasing it when solar and wind aren’t producing, Sage is helping bridge the intermittency gap in renewables. This approach positions pumped storage as a game-changer for a reliable, clean energy grid.

Lessons from the Founder’s Journey

Taff’s transition from a 35-year career at Shell to geothermal entrepreneurship offers valuable lessons for founders in capital-intensive industries:

  1. Leverage Expertise, but Stay Open to New Solutions:
    Taff’s oil and gas background enabled her to approach geothermal with deep technical knowledge, but Sage’s pivot to energy storage illustrates the importance of staying adaptable during development.
  2. Educate Financial Stakeholders:
    Securing funding for hard tech remains a challenge. “Investors often lack the subsurface knowledge needed to understand our technology,” Taff explained. She emphasized the need to bring on team members who can translate technical innovation into financial terms.
  3. Be Ready for Capital-Intensive Scaling:
    With geothermal plants costing millions to build, startups must carefully manage capital and timelines. Taff encourages founders to seek strategic investors, like Chesapeake Energy, who understand the challenges and potential of scaling infrastructure.

Beyond Geothermal: A Call for Pumped Storage Hydropower

In addition to geothermal, Taff champions pumped storage hydropower as an underutilized climate solution. “While lithium-ion batteries get a lot of attention, pumped storage hydropower offers long-duration storage that can stabilize the grid for days, not just hours,” she said.

By storing excess energy during off-peak times and releasing it when solar and wind aren’t producing, pumped storage hydropower can play a critical role in balancing renewables. Sage GeoSystems is uniquely positioned to integrate this technology into a broader energy strategy, offering sustainable and scalable solutions for energy-intensive industries.

A Vision for Geothermal and the Energy Transition

Looking ahead, Taff sees geothermal energy and storage as critical components of a sustainable energy mix. “We’re still in the early stages, but geothermal is following a trajectory similar to wind and solar 15 years ago,” she said. Sage’s innovative approaches are paving the way for geothermal to become a scalable, competitive solution, capable of powering industries and data centers while providing energy storage that stabilizes the grid.

With her recognition by Time magazine and a recent deal with Meta, Sage GeoSystems is proving that geothermal energy can be a powerful ally in achieving global decarbonization goals. The company’s innovative Geopressured Geothermal Systems and subsurface storage solutions are laying the groundwork for a reliable and sustainable energy future.

Listen to the full episode with Cindy Taff on the Energy Tech Startups Podcast here.

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

1PointFive secures new buyer for Texas CO2 removal project​

seeing green

Houston’s Occidental Petroleum Corp., or Oxy, and its subsidiary 1PointFive have secured another carbon removal credit deal for its $1.3 billion direct air capture (DAC) project, Stratos.

California-based Palo Alto Networks has agreed to purchase 10,000 tons of carbon dioxide removal (CDR) credits over five years from the project, according to a news release.

The company joins others like Microsoft, Amazon, AT&T, Airbus, the Houston Astros and the Houston Texans that have agreed to buy CDR credits from 1Point5.

"Collaborating with 1PointFive in this carbon removal credit agreement highlights our proactive approach toward exploring innovative solutions for a greener future,” BJ Jenkins, president of Palo Alto Networks, said in the release.

The Texas-based Stratos project is slated to come online this year near Odessa. It's being developed through a joint venture with investment manager BlackRock and is designed to capture up to 500,000 metric tons of CO2 per year. The U.S Environmental Protection Agency recently approved Class VI permits for the project.

DAC technology pulls CO2 from the air at any location, not just where carbon dioxide is emitted. Under the agreement with Palo Alto Networks and others, the carbon dioxide that underlies the credits will be stored in a below-the-surface saline aquifer and won’t be used to produce oil or gas.

“We look forward to collaborating with Palo Alto Networks and using Direct Air Capture to help advance their sustainability strategy,” Michael Avery, president and general manager of 1PointFive, said in the release. “This agreement continues to build momentum for high-integrity carbon removal while furthering DAC technology to support energy development in the United States.”

Houston researchers develop strong biomaterial that could replace plastic

plastic problem

Collaborators from two Houston universities are leading the way in engineering a biomaterial into a scalable, multifunctional material that could potentially replace plastic.

The research was led by Muhammad Maksud Rahman, an assistant professor of mechanical and aerospace engineering at the University of Houston and an adjunct assistant professor of materials science and nanoengineering at Rice University. The team shared its findings in a study in the journal Nature Communications earlier this month. M.A.S.R. Saadi, a doctoral student in material science and nanoengineering at Rice, served as the first author.

The study introduced a biosynthesis technique that aligns bacterial cellulose fibers in real-time, which resulted in robust biopolymer sheets with “exceptional mechanical properties,” according to the researchers.

Biomaterials typically have weaker mechanical properties than their synthetic counterparts. However, the team was able to develop sheets of material with similar strengths to some metals and glasses. And still, the material was foldable and fully biodegradable.

To achieve this, the team developed a rotational bioreactor and utilized fluid motion to guide the bacteria fibers into a consistent alignment, rather than allowing them to align randomly, as they would in nature.

The process also allowed the team to easily integrate nanoscale additives—like graphene, carbon nanotubes and boron nitride—making the sheets stronger and improving the thermal properties.

“This dynamic biosynthesis approach enables the creation of stronger materials with greater functionality,” Saadi said in a release. “The method allows for the easy integration of various nanoscale additives directly into the bacterial cellulose, making it possible to customize material properties for specific applications.”

Ultimately, the scientists at UH and Rice hope this discovery could be used for the “next disposable water bottle,” which would be made by biodegradable biopolymers in bacterial cellulose, an abundant resource on Earth.

Additionally, the team sees applications for the materials in the packaging, breathable textiles, electronics, food and energy sectors.

“We envision these strong, multifunctional and eco-friendly bacterial cellulose sheets becoming ubiquitous, replacing plastics in various industries and helping mitigate environmental damage,” Rahman said the release.

America's only rare earth producer announces $500M agreement with Apple

Digging In

MP Materials, which runs the only American rare earths mine, announced a new $500 million agreement with tech giant Apple on Tuesday to produce more of the powerful magnets used in iPhones as well as other high-tech products like electric vehicles.

This news comes on the heels of last week’s announcement that the U.S. Defense Department agreed to invest $400 million in shares of the Las Vegas-based company. That will make the government the largest shareholder in MP Materials and help increase magnet production.

Despite their name, the 17 rare earth elements aren’t actually rare, but it’s hard to find them in a high enough concentration to make a mine worth the investment.

They are important ingredients in everything from smartphones and submarines to EVs and fighter jets, and it's those military applications that have made rare earths a key concern in ongoing U.S. trade talks. That's because China dominates the market and imposed new limits on exports after President Donald Trump announced his widespread tariffs. When shipments dried up, the two sides sat down in London.

The agreement with Apple will allow MP Materials to further expand its new factory in Texas to use recycled materials to produce the magnets that make iPhones vibrate. The company expects to start producing magnets for GM's electric vehicles later this year and this agreement will let it start producing magnets for Apple in 2027.

The Apple agreement represents a sliver of the company's pledge to invest $500 billion domestically during the Trump administration. And although the deal will provide a significant boost for MP Materials, the agreement with the Defense Department may be even more meaningful.

Neha Mukherjee, a rare earths analyst with Benchmark Mineral Intelligence, said in a research note that the Pentagon's 10-year promise to guarantee a minimum price for the key elements of neodymium and praseodymium will guarantee stable revenue for MP Minerals and protect it from potential price cuts by Chinese producers that are subsidized by their government.

“This is the kind of long-term commitment needed to reshape global rare earth supply chains," Mukherjee said.

Trump has made it a priority to try to reduce American reliance on China for rare earths. His administration is both helping MP Materials and trying to encourage the development of new mines that would take years to come to fruition. China has agreed to issue some permits for rare earth exports but not for military uses, and much uncertainty remains about their supply. The fear is that the trade war between the world’s two biggest economies could lead to a critical shortage of rare earth elements that could disrupt production of a variety of products. MP Materials can't satisfy all of the U.S. demand from its Mountain Pass mine in California’s Mojave Desert.

The deals by MP Materials come as Beijing and Washington have agreed to walk back on their non-tariff measures: China is to grant export permits for rare earth magnets to the U.S., and the U.S. is easing export controls on chip design software and jet engines. The truce is intended to ease tensions and prevent any catastrophic fall-off in bilateral relations, but is unlikely to address fundamental differences as both governments take steps to reduce dependency on each other.