Here are five things to know from CERAWeek this year. Photo courtesy of CERAWeek

The 2024 edition of CERAWeek by S&P Global wrapped up last Friday in Houston, and a handful of themes emerged as topical and disruptive amid the energy transition.

Here are five takeaways from the conference, according to EnergyCapital reporting.

Funding the energy transition continues to be a challenge.

Photo courtesy of CERAWeek

The biggest obstacle to the energy transition is — and might always be — funding it. A panel at Agora on Thursday, March 21, moderated by Barbara Burger set out to discuss the role of venture capital amid the future of energy.

Daniel Goldman, managing partner at Clean Energy Ventures, said that the first plants for these new, revolutionary technologies are going to be more expensive than its subsequent plants.

"But you have to built it," Goldman says. "'First of a kind' can be very different from the end plant, because you need to manage risk. ... But those first plants are going to be quite costly, and you're going to have to recognize that as an investor."

Microsoft and Breakthrough Ventures Founder Bill Gates would address this in his talk later that day, pointing out that traditional infrastructure investors are used to knowing what a plant would cost before its built. But in clean tech, outside of solar and wind, there's too much unknown to give the estimation those investors are looking for.

"Nothing's at the maturity level that you can do that," Gates says.

The DOE's role of de-risking green tech.

Photo courtesy of CERAWeek

The United States Department of Energy had a significant presence at CERAWeek, with Secretary of Energy Jennifer M. Granholm making two major announcements on Monday, March 18, the first day of the conference. One of the announcements was the DOE's latest Pathways to Commercial Liftoff report, which are initiatives established to provide investors with information of how specific energy technologies commercialize and what challenges they each have to overcome as they scale.

"We develop these Liftoff Reports through a combination of modeling and hundreds and hundreds of interviews with people across the whole investment lifecycle—from early-stage capital to commercial banks and institutional investors," Granholm says in her address, announcing geothermal energy as the subject of the ninth report.

Intended to "create a common fact base and a tool for ongoing dialogue with the private sector on the pathways to commercial liftoff," according to the DOE, these reports can be instrumental for enterprises in the field.

A panel at Agora on Thursday, March 21, featuring geothermal energy innovators discussed the impact of the report. Tim Latimer, CEO and founder of Houston-based Fervo Energy, says the report included details from his company's work.

To Latimer, the report showcases geothermal energy's ability to compete from a cost perspective.

"I think geothermal is already winning that cost discussion," Latimer says. "You're talking about $45 per megawatt hour unsubsidized cost for round-the-clock, 24/7 carbon-free energy. I think that's an achievable ambition the DOE set out, and I think it's an unbeatable value proposition.

Hot topic: Geothermal energy.

Photo courtesy of CERAWeek

Geothermal energy was discussed throughout the week following Granholm's address, in part because of its expected cost efficiency, but also because it's a type of energy that should provide a smooth transition from traditional oil and gas.

John Redfern, CEO of Eavor Technologies, global geothermal technology company headquartered in Canada, says on the geothermal panel that the geothermal industry can build off existing infrastructure.

"Most of it is building blocks that we're recycling from the oil industry — resources, people, technologies," Redfern says. "So, it's more about implementing rather than inventing some new, novel product."

Latimer agrees, adding that Fervo "is fully in the deployment phase."

"The breakthrough needed to make geothermal ready for primetime have already happened," Latimer says.

AI is everywhere — especially the energy transition.

Photo courtesy of CERAWeek

The topic of artificial intelligence was everywhere, so much that by Thursday, panelists joked about every discussion including at least one mention of the technology.

Gates was one speaker who addresses the subject, which isn't all too surprising, since Microsoft owns a portion of OpenAI, which created ChatGPT. One thing left to be known is how directly AI will affect the energy transition — and on what timeline.

AI's current applications are within white collar activities, Gates explains, citing writing a regulatory permit or looking at evidence in a lawsuit. He explains that current AI capabilities could continually grow or remain stagnant for a while, he isn't sure.

"The thing that’s daunting is we don’t know how quickly it will improve," he adds.

Gates didn't comment on energy specific AI applications but noted that AI has advanced far past robotics, which would target blue collar roles.

Big tech sees green.

Photo courtesy of CERAWeek

And speaking of AI, big tech companies have been making moves to lower carbon footprints, and that was made clear by the activations at CERAWeek. Microsoft and Amazon each had designated houses at the conference, alongside Oxy, Chevron, Aramco, and other traditional energy players.

At Microsoft, Houston-based Amperon, which recently announced a partnership with the tech company, presented and pitched their company. The Microsoft and Amazon houses showcased each company's low-carbon technologies.

U.S. Secretary of Energy Jennifer M. Granholm made two big announcements at her CERAWeek address. Photo via Jennifer Granholm/X

DOE announces geothermal initiative, community-focused pilot at Houston energy conference

keynote address

The Department of Energy announced two major initiatives at U.S. Secretary of Energy Jennifer M. Granholm's address earlier this week at CERAWeek by S&P Global.

The first announcement Granholm revealed on Monday, March 18, at her keynote address was the DOE's latest Pathways to Commercial Liftoff report, which are initiatives established to provide investors with information of how specific energy technologies commercialize and what challenges they each have to overcome as they scale.

"We develop these Liftoff Reports through a combination of modeling and hundreds and hundreds of interviews with people across the whole investment lifecycle—from early-stage capital to commercial banks and institutional investors," Granholm says in her address.

The DOE has released eight already, and the ninth — and Granholm's favorite, she says — is on geothermal energy.

"Geothermal has such enormous potential. If we can capture the 'heat beneath our feet,' it can be the clean, reliable, base-load scalable power for everybody from industries to households," she says.

Geothermal development requires similar skills and infrastructure to traditional oil and gas, meaning the transition should be smooth, she explains, adding that the market is huge for geothermal.

"At scale, this market is significant: We're talking about at least—at least—a $250 billion investment opportunity to meet the goal that we have of 90 gigawatts of capacity by 2050," she remarks.

Granholm's address shifted into acknowledging the negative impact on communities the energy industry's history is paved with. She emphasizes how each of the Biden Administration's laws passed — like the Inflation Reduction Act and the Bipartisan Infrastructure Law — implemented requirements and incentives with communities in mind.

The administration's next initiative, and Granholm's second big announcement, is "to empower communities to build their energy future."

Regional Energy Democracy Initiative, or REDI, as Granholm describes, will "bring together companies, and community groups, and academic institutions, and philanthropy to weave equity and justice into DOE-funded clean energy projects."

The inaugural pilot will be in the Gulf South across Texas and Louisiana. She says the DOE plans to award over $8 billion to regional carbon reduction and clean energy infrastructure projects.

"These structures will provide capacity building, technical assistance to help communities match their most pressing needs with the biggest opportunities…to design and to implement Community Benefits Plans," Granholm says, "in short, really to have a say in how the historic clean energy investments in their backyards are going to benefit their people."

Granholm also noted on the progress of the clean energy sector, including how clean energy investment is three times what it was in 2018 and that in 2024, wind and solar energy in the U.S. is expected to outpace coal generation for the first time.

All this progress, Granholm explains, in light of global events and global energy supply disruption

"But our work together really has to extend beyond crisis management," she says. "Because the sooner that we acknowledge this transition for what it is—an undeniable, inevitable, and necessary realignment of the world’s energy system—the sooner we can capitalize on this incredible opportunity."

CeraPhi Energy acquired the business of Third Energy Limited, a former fracking company. Photo via ceraphi.com

Geothermal co. with Houston office acquires former fracking biz

m&a moves

A geothermal company with Houston ties has made a strategic acquisition.

CeraPhi Energy acquired the business of Third Energy Limited, which is a former fracking company, with plans to repurpose the existing wells into clean geothermal energy centers. The terms of the deal were not disclosed.

The acquisition is set to include subsidiaries like Third Energy Trading Limited, Wolfland Renewables Limited, Wolfland Utilities Limited, Third Energy UK Gas Limited, and 50 percent holding in West Heslerton Renewables Limited.

The assets are located in North Yorkshire U.K. and include eight well sites consisting of 12 former gas wells in a suspended state, 22.4 km of 6-inch and 16.6 km of 3-inch subterranean pipelines and a further 22.4 km of buried fiber optic comms lines.

CeraPhi, which has a Houston office in Greentown Labs, completed a commercial demonstration of its CeraPhiWell system in 2023 using the Third Energy KMA site.

The company's strategy aims to “de-risk the scaling and commercialisation of large-scale heat networks using boreholes down to a depth of 2km, reducing the space required for deployment of large-scale systems and increasing the extraction of thermal energy available for network connections,” according to its website.

“By using the inexhaustible resource beneath our feet using closed-loop technology we can access this energy anywhere with zero environmental risk, requiring no hydraulic fracturing, no use of water and providing enough energy within the next 15 years to solve our energy crisis indefinitely,” says CEO Karl Farrow in a news release.

Houston-based Sage Geosystems announced the first close of $17 million round led by Chesapeake Energy Corp. Photo via sagegeosystems.com

Chesapeake Energy backs Houston geothermal tech co. in $17M series A

fresh funding

A Houston geothermal startup has announced the close of its series A round of funding.

Houston-based Sage Geosystems announced the first close of $17 million round led by Chesapeake Energy Corp. The proceeds aim to fund its first commercial geopressured geothermal system facility, which will be built in Texas in Q4 of 2024. According to the company, the facility will be the first of its kind.

The venture is joined by technology investor Arch Meredith, Helium-3 Ventures and will include support from existing investors Virya, LLC, Nabors Industries Ltd., and Ignis Energy Inc.

“The first close of our Series A funding and our commercial facility are significant milestones in our mission to make geopressured geothermal system technologies a reality,” Cindy Taff, CEO of Sage Geosystems, says in a news release. “The success of our GGS technologies is not only critical to Sage Geosystems becoming post-revenue, but it is an essential step in accelerating the development of this proprietary geothermal baseload approach. This progress would not be possible without the ongoing support from our existing investors, and we look forward to continuing this work with our new investors.”

The 3-megawatt commercial facility will be called EarthStore and will use Sage’s technology that harvests energy from pressurized water from underground. The facility will be able to store energy — for short and long periods of time — and can be paired with intermittent renewable energy sources like wind and solar. It will also be able to provide baseload, dispatchable power, and inertia to the electric grid.

In 2023, Sage Geosystems debuted the EarthStore system in a full-scale commercial pilot project in Texas. The pilot produced 200 kilowatt for more than 18 hours, 1 megawatt for 30 minutes, and generated electricity with Pelton turbines. The system had a water loss of less than 2 percent and a round-trip efficiency (RTE) of 70-75.

———

This article originally ran on InnovationMap.

Things are heating up in Utah for Fervo Energy. Photo via fervoenergy.com

Houston company breaks ground on 'world's largest' geothermal project with next-generation tech

coming soon

Houston-based cleantech startup Fervo Energy has broken ground on what it's describing as the "world’s largest next-gen geothermal project."

Fervo says the a 400-milliwatt geothermal energy project in Cape Station, Utah, will start delivering carbon-free power to the grid in 2026, with full-scale production beginning in 2028.

The project, in southwest Utah, is about 240 miles southwest of Salt Lake City and about 240 miles northeast of Las Vegas. Cape Station is adjacent to the U.S. Department of Energy’s Frontier Observatory for Research in Geothermal Energy (FORGE) and near the Blundell geothermal power plant.

The company says Cape Station will generate about 6,600 construction jobs and 160 full-time jobs.

“Beaver County, Utah, is the perfect place to deploy our next-generation geothermal technology,” Tim Latimer, co-founder and CEO of Fervo, says in a news release. “The warmth and hospitality we have experienced from the communities of Milford and Beaver have allowed us to embark on a clean energy journey none of us could have imagined just a few years ago.”

In February, the U.S. Bureau of Land Management gave its blessing to the project, allowing Fervo to undertake exploration activities at the site.

“Geothermal innovations like those pioneered by Fervo will play a critical role in extending Utah’s energy leadership for generations to come,” says Utah Gov. Spencer Cox, who attended the groundbreaking ceremony.

Since being founded in 2017, Fervo has raised more than $180 million in funding. Its highest-profile investors are billionaires Jeff Bezos, Richard Branson and Bill Gates. They’re backing Fervo through Breakthrough Energy Ventures, whose managing director sits on Fervo’s board of directors.

Other investors include the Canada Pension Plan Investment Board (CPP Investments), DCVC, Devon Energy, Liberty Energy, Helmerich & Payne, Macquarie, the Grantham Foundation for the Protection of the Environment, Impact Science Ventures, and Prelude Ventures.

Fervo aims to generate more than one gigawatt of geothermal energy by 2030. On average, one gigawatt of power can provide electricity for 750,000 homes. Two coal-fired power plants can generate roughly the same amount of electricity.

Earlier this year, Fervo announced results of a test at Nevada’s Project Red site, which will supply power to Google data centers in the Las Vegas area. Fervo says the 30-day well test established Project Red as the “most productive enhanced geothermal system in history,” the company says. The test generated 3.5 megawatts of electricity.

In 2021, Fervo and Google signed the world’s first corporate agreement to produce geothermal power. Under the deal, Fervo will generate five megawatts of geothermal energy for Google through the Nevada project, which is set to go online later this year.

Houston startup Sage Geosystems released the results of its pilot at a Shell-drilled oil well in the Rio Grande Valley’s Starr County. Photo via sagegeosystems.com

Houston-based geothermal energy startup releases promising results of Texas pilot

hot off the press

As it seeks an additional $30 million in series A funding, Houston startup Sage Geosystems has released promising results from a test of its technology for underground storage of geothermal energy.

Sage says the pilot project, conducted at a Shell-drilled oil well in the Rio Grande Valley’s Starr County, showed the company’s long-term energy storage can compete on a cost basis with lithium-ion battery storage, hydropower storage, and natural gas-powered peaker plants. Peaker plants supply power during periods of peak energy demand.

Furthermore, Sage’s geothermal technology will provide more power capacity at half the cost of other advanced geothermal systems, the company says.

Sage’s storage system retrofits oil and gas wells with the company’s geothermal technology. But the company says its technology “can be deployed virtually anywhere.”

The system relies on mechanical storage instead of battery storage. In mechanical storage, heat, water, or air works in tandem with compressors, turbines, and other machinery. By contrast, battery storage depends on chemistry to get the job done.

“We have cracked the code to provide the perfect complement to renewable energy. … The opportunities for our energy storage to provide power are significant — from remote mining operations to data centers to solving energy poverty in remote locations,” former Shell executive Cindy Taff, CEO of Sage, says in a September 12 news release.

Sage says its storage capacity can be connected to existing power grids, or it can develop microgrids that harness stored energy.

An August 2023 article in The New York Times explained that Sage “is pursuing fracked wells that act as batteries. When there’s surplus electricity on the grid, water gets pumped into the well. In times of need, pressure and heat in the fractures pushes water back up, delivering energy.”

The pilot project, a joint venture between Sage and the Bureau of Economic Ecology at the University of Texas at Austin, was performed as part of a feasibility study financed by the Air Force. Now that the test results are in, Sage plans to build a prototype geothermal project at the Air Force’s Ellington Field Joint Reserve Base in Houston.

Sage says another feasibility study is underway in the Middle East in partnership with an unnamed oil and gas company.

Founded in 2020, Sage plans to raise another $30 million to accompany its previous series A funding.

The Virya climate fund and Houston-based drilling contractor Nabors Industries helped finance the pilot project in Starr County.

Last year, Sage announced it received an undisclosed amount of equity from Houston-based Ignis H2 Energy, a geothermal exploration and development company, and Dutch energy company Geolog International. Also last year, Sage said Nabors and Virya had teamed up for a $12 million investment in the startup.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

ExxonMobil revs up EV pilot in Permian Basin

seeing green

ExxonMobil has upgraded its Permian Basin fleet of trucks with sustainability in mind.

The Houston-headquartered company announced a new pilot program last week, rolling out 10 new all-electric pickup trucks at its Cowboy Central Delivery Point in southeast New Mexico. It's the first time the company has used EVs in any of its upstream sites, including the Permian Basin.

“We expect these EV trucks will require less maintenance, which will help reduce cost, while also contributing to our plan to achieve net zero Scope 1 and 2 emissions in our Permian operations by 2030," Kartik Garg, ExxonMobil's New Mexico production manager, says in a news release.

ExxonMobil has already deployed EV trucks at its facilities in Baytown, Beaumont, and Baton Rouge, but the Permian Basin, which accounts for about half of ExxonMobil's total U.S. oil production, is a larger site. The company reports that "a typical vehicle there can log 30,000 miles a year."

The EV rollout comes after the company announced last year that it plans to be a major supplier of lithium for EV battery technology.

At the end of last year, ExxonMobil increased its financial commitment to implementing more sustainable solutions. The company reported that it is pursuing more than $20 billion of lower-emissions opportunities through 2027.

Cowboys and the EVs of the Permian Basin | ExxonMobilyoutu.be

Energy industry veteran named CEO of Houston hydrogen co.

GOOD AS GOLD

Cleantech startup Gold H2, a spinout of Houston-based energy biotech company Cemvita, has named oil and gas industry veteran Prabhdeep Singh Sekhon as its CEO.

Sekhon previously held roles at companies such as NextEra Energy Resources and Hess. Most recently, he was a leader on NextEra’s strategy and business development team.

Gold H2 uses microbes to convert oil and gas in old, uneconomical wells into clean hydrogen. The approach to generating clean hydrogen is part of a multibillion-dollar market.

Gold H2 spun out of Cemvita last year with Moji Karimi, co-founder of Cemvita, leading the transition. Gold H2 spun out after successfully piloting its microbial hydrogen technology, producing hydrogen below 80 cents per kilogram.

The Gold H2 venture had been a business unit within Cemvita.

“I was drawn to Gold H2 because of its innovative mission to support the U.S. economy in this historical energy transition,” Sekhon says in a news release. “Over the last few years, my team [at NextEra] was heavily focused on the commercialization of clean hydrogen. When I came across Gold H2, it was clear that it was superior to each of its counterparts in both cost and [carbon intensity].”

Gold H2 explains that oil and gas companies have wrestled for decades with what to do with exhausted oil fields. With Gold H2’s first-of-its-kind biotechnology, these companies can find productive uses for oil wells by producing clean hydrogen at a low cost, the startup says.

“There is so much opportunity ahead of Gold H2 as the first company to use microbes in the subsurface to create a clean energy source,” Sekhon says. “Driving this dynamic industry change to empower clean hydrogen fuel production will be extremely rewarding.”

–––

This article originally ran on InnovationMap.

Q&A: CEO of bp-acquired RNG producer on energy sustainability, stability

the view from heti

bp’s Archaea Energy is the largest renewable natural gas (RNG) producer in the U.S., with an industry leading RNG platform and expertise in developing, constructing and operating RNG facilities to capture waste emissions and convert them into low carbon fuel.

Archaea partners with landfill owners, farmers and other facilities to help them transform their feedstock sources into RNG and convert these facilities into renewable energy centers.

Starlee Sykes, Archaea Energy’s CEO, shared more about bp’s acquisition of the company and their vision for the future.

HETI: bp completed its acquisition of Archaea in December 2022. What is the significance of this acquisition for bp, and how does it bolster Archaea’s mission to create sustainability and stability for future generations?  

Starlee Sykes: The acquisition was an important move to accelerate and grow our plans for bp’s bioenergy transition growth engine, one of five strategic transition growth engines. Archaea will not only play a pivotal role in bp’s transition and ambition to reach net zero by 2050 or sooner but is a key part of bp’s plan to increase biogas supply volumes.

HETI: Tell us more about how renewable natural gas is used and why it’s an important component of the energy transition?  

SS: Renewable natural gas (RNG) is a type of biogas generated by decomposing organic material at landfill sites, anaerobic digesters and other waste facilities – and demand for it is growing. Our facilities convert waste emissions into renewable natural gas. RNG is a lower carbon fuel, which according to the EPA can help reduce emissions, improve local air quality, and provide fuel for homes, businesses and transportation. Our process creates a productive use for methane which would otherwise be burned or vented to the atmosphere. And in doing so, we displace traditional fossil fuels from the energy system.

HETI: Archaea recently brought online a first-of-its-kind RNG plant in Medora, Indiana. Can you tell us more about the launch and why it’s such a significant milestone for the company?  

SS:Archaea’s Medora plant came online in October 2023 – it was the first Archaea RNG plant to come online since bp’s acquisition. At Medora, we deployed the Archaea Modular Design (AMD) which streamlines and accelerates the time it takes to build our plants. Traditionally, RNG plants have been custom-built, but AMD allows plants to be built on skids with interchangeable components for faster builds.

HETI: Now that the Medora plant is online, what does the future hold? What are some of Archaea’s priorities over the next 12 months and beyond?  

SS: We plan to bring online around 15 RNG plants in each of 2024 and 2025. Archaea has a development pipeline of more than 80 projects that underpin the potential for around five-fold growth in RNG production by 2030.

We will continue to operate around 50 sites across the US – including RNG plants, digesters and landfill gas-to-electric facilities.

And we are looking to the future. For example, at our Assai plant in Pennsylvania, the largest RNG plant in the US, we are in the planning stages to drill a carbon capture sequestration (CCS) appraisal well to determine if carbon dioxide sequestration could be feasible at this site, really demonstrating our commitment to decarbonization and the optionality in value we have across our portfolio.

HETI: bp has had an office in Washington, DC for many years. Can you tell us more about the role that legislation has to play in the energy transition? 

SS: Policy can play a critical role in advancing the energy transition, providing the necessary support to accelerate reductions in greenhouse gas emissions. We actively advocate for such policies through direct lobbying, formal comments and testimony, communications activities and advertising. We also advocate with regulators to help inform their rulemakings, as with the US Environmental Protection Agency to support the finalization of a well-designed electric Renewable Identification Number (eRIN) program.

HETI: Science and innovation are key drivers of the energy transition. In your view, what are some of most exciting innovations supporting the goal to reach net-zero emissions?  

SS: We don’t just talk about innovation in bp, we do it – and have been for many years. This track record gives us confidence in continuing to transform, change and innovate at pace and scale. The Archaea Modular Design is a great example of the type of innovation that bp supports which enables us to pursue our goal of net-zero emissions.

Beyond Archaea, we have engineers and scientists across bp who are working on innovative solutions with the goal of lowering emissions. We believe that we need to invest in lower carbon energy to meet the world’s climate objectives, but we also need to invest in today’s energy system, which is primarily hydrocarbon focused. It’s an ‘and’ not ‘or’ approach, and we need both to be successful.

Learn more about Archaea and the work they are doing in energy transition.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.