big deal

US Air Force awards Houston geothermal co. $1.9M grant project

Houston startup Sage Geosystems has announced a new $1.9 million deal with the Air Force. Photo via sagegeosystems.com

The Department of the Air Force awarded Houston geothermal company Sage Geosystems Inc. a grant of $1.9 million in a first-of-its kind contract to determine whether a power plant using Geopressured Geothermal Systems is able to generate clean energy “needed for a base to achieve energy resilience,” according to a news release. The Sage facility will be the first GGS facility in the world to generate electricity, and the system will be constructed at an off-site test well in Starr County, Texas.

”We are excited to partner with the U.S. Air Force on this geothermal demonstration project,” CEO of Sage Geosystems Cindy Taff says in a news release. “Next generation geothermal technologies, like Sage Geosystems’ GGS, will be critical in providing energy resiliency at U.S. military installations.”

In addition to the grant, the company will match the grant with an additional $1.9 million for the demonstration project. The collaboration with Sage is one of three geothermal pilot projects the DAF has initiated in regards to next-generation geothermal technologies in 2024.

“We feel this is the launch pad of helping not only the DoD but many other applications throughout global markets,” 147th Civil Engineer Squadron Commander Lt Col Christian Campbell says in the release.

According to the DAF, the possibility of a full-scale project at Ellington Field Joint Air Reserve Base in Houston could usher in a new era of clean power producing plants to help meet the requirements for bases.

“This initial contract is a step forward in the Air Force’s push for energy resilience,” Kirk Phillips, director of the Air Force Office of Energy Assurance, adds in the release. “This project will improve Ellington Field’s ability to maintain operations during electrical grid outages and be completely self-sufficient for their energy needs.”

The GGS process works by repurposing fracking technology to extract thermal energy from below the Earth’s surface.GGS also demonstrates the opportunity for the civilian sector by surpassing the intermittency challenges for solar and wind energy generation. GSS can also work towards minimizing land use, which enables the technology to be used in urban areas without relying on transmission line build outs that can be expensive.

“This project, and the future Department of the Air Force projects that it paves the way for, will help to assure that our national security needs are met by our installations during critical emergencies,” Phillips continues.

Trending News

A View From HETI

Researchers have secured $3.3 million in funding to develop an AI-powered subsurface sensing system aimed at improving the safety and efficiency of underground power line installation. Photo via Getty Images

Researchers from the University of Houston — along with a Hawaiian company — have received $3.3 million in funding to explore artificial intelligence-backed subsurface sensing system for safe and efficient underground power line installation.

Houston's power lines are above ground, but studies show underground power is more reliable. Installing underground power lines is costly and disruptive, but the U.S. Department of Energy, in an effort to find a solution, has put $34 million into its new GOPHURRS program, which stands for Grid Overhaul with Proactive, High-speed Undergrounding for Reliability, Resilience, and Security. The funding has been distributed across 12 projects in 11 states.

“Modernizing our nation’s power grid is essential to building a clean energy future that lowers energy costs for working Americans and strengthens our national security,” U.S. Secretary of Energy Jennifer M. Granholm says in a DOE press release.

UH and Hawaii-based Oceanit are behind one of the funded projects, entitled “Artificial Intelligence and Unmanned Aerial Vehicle Real-Time Advanced Look-Ahead Subsurface Sensor.”

The researchers are looking a developing a subsurface sensing system for underground power line installation, potentially using machine learning, electromagnetic resistivity well logging, and drone technology to predict and sense obstacles to installation.

Jiefu Chen, associate professor of electrical and computer engineering at UH, is a key collaborator on the project, focused on electromagnetic antennas installed on UAV and HDD drilling string. He's working with Yueqin Huang, assistant professor of information science technology, who leads the geophysical signal processing and Xuqing Wu, associate professor of computer information systems, responsible for integrating machine learning.

“Advanced subsurface sensing and characterization technologies are essential for the undergrounding of power lines,” says Chen in the release. “This initiative can enhance the grid's resilience against natural hazards such as wildfires and hurricanes.”

“If proven successful, our proposed look-ahead subsurface sensing system could significantly reduce the costs of horizontal directional drilling for installing underground utilities,” Chen continues. “Promoting HDD offers environmental advantages over traditional trenching methods and enhances the power grid’s resilience.”

Trending News