In a recent Energy Tech Startups Podcast episode, Cindy Taff discussed the evolution of Sage GeoSystems, the challenges of scaling hard tech solutions, and the opportunities presented by geothermal and pumped hydro energy storage. Photo courtesy of Sage

Cindy Taff, co-founder and CEO of Sage GeoSystems, has emerged as a visionary leader in the energy transition, recently named to Time magazine’s 100 Most Influential Climate Leaders in Business for 2024. Under her leadership, Sage is not only advancing geothermal energy innovation but also redefining how energy storage can support a renewable-powered grid.

In a recent Energy Tech Startups Podcast episode, Taff discussed the evolution of Sage GeoSystems, the challenges of scaling hard tech solutions, and the opportunities presented by geothermal and pumped hydro energy storage. Her insights reflect the unique perspective of a founder bridging oil and gas expertise with renewable energy innovation.

- YouTubeCindy shares how Sage Geosystems is leveraging its oil and gas expertise to develop groundbreaking subsurface pumped hydro ...

Breaking Boundaries with Geopressured Geothermal Systems

Sage GeoSystems is at the forefront of next-generation geothermal energy, advancing Geopressured Geothermal Systems (GGS) that can be deployed in a wide range of geographies. Unlike traditional geothermal systems, which rely on natural water reservoirs near volcanic activity, Sage’s engineered reservoirs allow geothermal energy to be tapped almost anywhere.

“Geothermal energy is no longer restricted to specific conditions,” Taff explained. “Our systems are flexible, scalable, and capable of meeting the needs of energy-intensive applications like data centers—including a recent deal with Meta to deliver 150 megawatts of geothermal power for their facilities.”

This adaptability sets Sage apart, offering a path to reliable, clean energy that can complement intermittent sources like wind and solar. Sage also secured a win in the Energy Transition Business category alongside notable finalists like Amperon and Tierra Climate, underscoring its leadership in innovative energy solutions.

Pivoting Toward Subsurface Energy Storage

While initially focused solely on geothermal, Sage uncovered a transformative opportunity in subsurface pumped hydro energy storage during field trials. Dubbed “upside-down pumped hydro,” the solution provides long-duration energy storage capable of balancing the grid for 17+ hours—far surpassing the capabilities of lithium-ion batteries for extended periods.

“Pumped storage hydropower is a critical piece of the energy puzzle,” Taff emphasized. By storing energy during off-peak times and releasing it when solar and wind aren’t producing, Sage is helping bridge the intermittency gap in renewables. This approach positions pumped storage as a game-changer for a reliable, clean energy grid.

Lessons from the Founder’s Journey

Taff’s transition from a 35-year career at Shell to geothermal entrepreneurship offers valuable lessons for founders in capital-intensive industries:

  1. Leverage Expertise, but Stay Open to New Solutions:
    Taff’s oil and gas background enabled her to approach geothermal with deep technical knowledge, but Sage’s pivot to energy storage illustrates the importance of staying adaptable during development.
  2. Educate Financial Stakeholders:
    Securing funding for hard tech remains a challenge. “Investors often lack the subsurface knowledge needed to understand our technology,” Taff explained. She emphasized the need to bring on team members who can translate technical innovation into financial terms.
  3. Be Ready for Capital-Intensive Scaling:
    With geothermal plants costing millions to build, startups must carefully manage capital and timelines. Taff encourages founders to seek strategic investors, like Chesapeake Energy, who understand the challenges and potential of scaling infrastructure.

Beyond Geothermal: A Call for Pumped Storage Hydropower

In addition to geothermal, Taff champions pumped storage hydropower as an underutilized climate solution. “While lithium-ion batteries get a lot of attention, pumped storage hydropower offers long-duration storage that can stabilize the grid for days, not just hours,” she said.

By storing excess energy during off-peak times and releasing it when solar and wind aren’t producing, pumped storage hydropower can play a critical role in balancing renewables. Sage GeoSystems is uniquely positioned to integrate this technology into a broader energy strategy, offering sustainable and scalable solutions for energy-intensive industries.

A Vision for Geothermal and the Energy Transition

Looking ahead, Taff sees geothermal energy and storage as critical components of a sustainable energy mix. “We’re still in the early stages, but geothermal is following a trajectory similar to wind and solar 15 years ago,” she said. Sage’s innovative approaches are paving the way for geothermal to become a scalable, competitive solution, capable of powering industries and data centers while providing energy storage that stabilizes the grid.

With her recognition by Time magazine and a recent deal with Meta, Sage GeoSystems is proving that geothermal energy can be a powerful ally in achieving global decarbonization goals. The company’s innovative Geopressured Geothermal Systems and subsurface storage solutions are laying the groundwork for a reliable and sustainable energy future.

Listen to the full episode with Cindy Taff on the Energy Tech Startups Podcast here.

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.


These three Houston innovators have been recognized by Time Magazine. Photos courtesy

3 Houstonians named to prestigious list of climate leaders

who's who

Three Houston executives — Andrew Chang, Tim Latimer, and Cindy Taff — have been named to Time magazine’s prestigious list of the 100 Most Influential Climate Leaders in Business for 2024.

As managing director of United Airlines Ventures, Chang is striving to reduce the airline’s emissions by promoting the use of sustainable aviation fuel (SAF). Jets contribute to about two percent of global emissions, according to the International Energy Agency.

In 2023, Chang guided the launch of the Sustainable Flight Fund, which invests in climate-enhancing innovations for the airline sector. The fund aims to boost production of SAF and make it an affordable alternative fuel, Time says.

Chang tells Time that he’d like to see passage of climate legislation that would elevate the renewable energy sector.

“One of the most crucial legislative actions we could see in the next year is a focus on faster permitting processes for renewable energy projects,” Chang says. “This, coupled with speeding up the interconnection queue for renewable assets, would significantly reduce the time it takes for clean energy to come online.”

At Fervo Energy, Latimer, who’s co-founder and CEO, is leading efforts to make geothermal power “a viable alternative to fossil fuels,” says Time.

Fervo recently received government approval for a geothermal power project in Utah that the company indicates could power two million homes. In addition, Fervo has teamed up with Google to power the tech giant’s energy-gobbling data centers.

In an interview with Time, Latimer echoes Chang in expressing a need for reforms in the clean energy industry.

“Addressing climate change is going to require us to build an unprecedented amount of infrastructure so we can replace the current fossil fuel-dominated systems with cleaner solutions,” says Latimer. “Right now, many of the solutions we need are stalled out by a convoluted permitting and regulatory system that doesn’t prioritize clean infrastructure.”

Taff, CEO of geothermal energy provider Sage Geosystems, oversees her company’s work to connect what could be the world’s first geopressured geothermal storage to the electric grid, according to Time. In August, Sage announced a deal with Facebook owner Meta to produce 150 megawatts of geothermal energy for the tech company’s data centers.

Asked which climate solution, other than geothermal, deserves more attention or funding, Taff cites pumped storage hydropower.

“While lithium-ion batteries get a lot of the spotlight, pumped storage hydropower offers long-duration energy storage that can provide stability to the grid for days, not just hours,” Taff tells Time. “By storing excess energy during times of low demand and releasing it when renewables like solar and wind are not producing, it can play a critical role in balancing the intermittent nature of renewables. Investing in pumped storage hydropower infrastructure could be a game-changer in achieving a reliable, clean energy future.”

Clockwise from top left: Sean Kelly of Amperon, Dianna Liu of ARIXTechnologies, Matthew Dawson of Elementium Materials, Vibhu Sharma of InnoVent Renewables, Cindy Taff of Sage Geosystems, and Emma Konet of TierraClimate. Photos courtesy

Houston's top energy transition founders explain their biggest challenges

overheard

From finding funding to navigating the pace of traditional oil and gas company tech adoption, energy transition companies face their fair share of challenges.

This year's Houston Innovation Awards finalists in the Energy Transition category explained what their biggest challenge has been and how they've overcome it. See what they said below, and make sure to secure your tickets to the Nov. 14 event to see which of these finalists win the award.

"The evolving nature of the energy industry presents opportunities to solve some of our industry's greatest challenges. At Amperon we help optimize grid reliability and stability with the power of AI demand forecasting." 

Sean Kelly, CEO of Amperon, an AI platform powering the smart grid of the future

"The biggest challenge in leading an energy transition-focused startup has been balancing the urgency for sustainable solutions with the slow pace of change in traditional industries like oil and gas. Many companies are cautious about adopting new technologies, especially when it comes to integrating sustainability initiatives. We overcame this by positioning our solutions not just as environmentally friendly, but as tools that improve safety, efficiency, and cost savings. By aligning our value proposition with their operational goals and demonstrating real, measurable benefits, we were able to gain traction and drive adoption in industries that are traditionally resistant to change." 

— Dianna Liu, CEO of ARIXTechnologies, an integrated robotics and data analytics company that delivers inspection services through its robotics platforms

"Scaling up production of hard tech is a major challenge. Thankfully, we recruited top-notch talent with experience in technology scale-up and chemical processes. In addition, we've begun building partnerships with some of the world's largest chemical manufacturers in our space who are excited to be a part of our journey and could rapidly accelerate our go to market strategy. We have significant demand for our product as early as 2025, so partnering with these companies to scale-up will bring our technology to market years ahead of doing it alone."

— Matthew Dawson, CEO of Elementium Materials, a battery technology with liquid electrolyte solutions

"Our pyrolysis reactor is a proprietary design that was developed during Covid. We ran simulations to prove that it works, but it was not easy to test it in a pilot facility, let alone scaling it up. We managed ... to run our pilot plant studies, while working with them remotely. We proved that our reactor worked and produced high quality products. Later, we built our own pilot plant R&D facility to continue running tests and optimizing the process. Then, there was the challenge of scaling it up to commercial size. ... We put together a task force of four different companies to come together to design and build this complex reactor in record time."

— Vibhu Sharma, CEO of InnoVent Renewables, a startup with proprietary continuous pyrolysis technology that converts waste tires, plastics, and biomass into valuable fuels and chemicals

"Energy storage and geothermal power generation are capital-intensive infrastructure projects, requiring investors with a deep commitment and the patience in terms of years to allow the technology to be developed and proven in the field. One challenge is finding that niche of investors with the vision to join our journey. We have succeeded in raising our $30 million series A with these types of investors, whom we’re confident will continue the journey as we scale." 

— Cindy Taff, CEO of Sage Geosystems, an energy company focused on developing and deploying advanced geothermal technologies to provide reliable power and sustainable energy storage solutions regardless of geography

"The biggest challenge we've faced has been to bring together massive independent power producers on one side who are investing hundreds of millions of dollars into grid infrastructure with multi- national tech giants on the other that don't have experience working much with energy storage. As a startup with only four employees, gaining credibility with these players was critical. We overcame this hurdle by becoming the preeminent thought leader on storage emissions, through publishing white papers, discussing the issues on podcasts, and (more)."

— Emma Konet, CTO of TierraClimate, a software provider that helps grid-scale batteries reduce carbon emissions

Sage Geosystems will onboard its technology at the Naval Air Station in Corpus Christi. Photo via Naval Air Station Corpus Christi/Facebook

Houston geothermal co. expands DOD partnership with South Texas initiative

seeing green

Expanding on its partnership with the United States Department of Defense's Defense Innovation Unit, Sage Geosystems has been selected to conduct geothermal project development initiatives at Naval Air Station in Corpus Christi.

Along with the Environmental Security Technology Certification Program, Sage will provide its proprietary Geopressured Geothermal Systems technology, will be able to evaluate the potential for geothermal baseload power generation to provide clean and consistent energy at the Naval Air Station base.

“We’re pleased to expand our partnership with the DOD at NAS Corpus Christi to demonstrate the advantages of geothermal technology for military energy independence,” Cindy Taff, CEO of Sage Geosystems, says in a news release.

Sage is also conducting initiatives at Fort Bliss and has completed an analysis at the Ellington Field Joint Reserve Base. The analyses could “pave the way for expanding geothermal energy solutions across additional U.S. military installations,” according to Sage.

The company’s proprietary technology works by leveraging hot dry rock, which is a more abundant geothermal resource compared to traditional hydrothermal formations, and it provides energy resilience for infrastructures. In addition, Sage is building a 3 megawatt commercial EarthStore geothermal energy storage facility in Christine, Texas, which is expected to be completed by December. Sage also announced a partnership with Meta Platforms. With Meta Platforms, Sage will deliver up to 150 megawatt of geothermal power generation east of the Rocky Mountains.

The Naval Air Station Corpus Christi is considered a critical training and operations hub for the U.S. Navy, and the partnership with Sage shows the Navy's commitment to achieving net-zero carbon emissions by 2045. Sage’s technology will be assessed for its ability to create a microgrid, which can reduce reliance on the utility grid and ensure power supply during outages.

“As we advance our Geopressured Geothermal Systems, we see tremendous potential to not only provide carbon-free power, but also strengthen the operational capabilities of U.S. military installations in an increasingly digital and electric world,” Taff adds.

In September, the Air Force awarded Sage a grant of $1.9 million in a first-of-its kind contract to determine whether a power plant using Geopressured Geothermal Systems is able to generate clean energy needed for a base to achieve energy resilience.

Cindy Taff of Sage Geosystems shares her vision for her company and for the future of energy. Photo courtesy of Sage

Profile: Former Shell VP helps create a new way of making clean electricity with Houston company

leading energy

When Cindy Taff was a vice president at the giant oil and gas company Shell in Houston, her middle schooler Brianna would sometimes look over her shoulder as she worked from home.

“Why are you still working in oil and gas?” her daughter asked more than once. “Is there a future in it? Why aren’t you moving into something clean?”

The words weighed on Taff.

“As a parent you want to give direction, and was I giving her the right direction?” she recalled.

At Shell, Taff was in charge of drilling wells and bringing them into production. She worked on oil and natural gas that's called unconventional in the industry, because the oil or natural gas is difficult to get out of the ground — it doesn't naturally gush out like in movies. It's a term often used for oily shale rock. Taff was somewhat unconventional for the industry, too. Her coworkers used to tease her for driving an efficient hybrid.

“You’re not helping oil and gas prices by driving a Prius," they'd say.

______

EDITOR’S NOTE: This is part of an occasional series of personal stories from the energy transition — the change away from a fossil-fuel based world that largely causes climate change.

______

Taff wanted Shell to pursue the energy that comes from the Earth's natural heat — geothermal. Her team looked into it, but Shell never greenlit any of those projects, saying it would take too much time to recoup the investment.

When Brianna went to college, she was passionate about energy too, but she wanted to work on renewables. After her sophomore year, in the summer of 2020, she got an internship at a geothermal company — one that in fact had just been launched by Taff's former colleagues at Shell — Sage Geosystems in Houston.

Now it was Taff looking over her daughter's shoulder and asking question as she worked from home during the pandemic.

And Sage executives were talking to Brianna, too. “We could use your mom here," they said. "Can you get her to come work for us?” Brianna recalled recently.

That's how Cindy Taff left her 36-year career at Shell to become chief operating officer at Sage.

“I didn't understand why Shell wasn't pursuing it,” she said about applying the company's drilling expertise to heat energy. "Then I got this great opportunity to pivot from oil and gas and work with these guys that I have the utmost respect for. And also, I wanted to make my daughter proud, quite frankly.”

Brianna Byrd, now 24, is the operations engineer and spokesperson at the company. She's glad her mother, now CEO, left oil and gas.

“Of course I’m biased, she’s my mom, but I don’t think Sage would be where it is without her,” she said.

The United States is a world leader in electricity made from geothermal energy, but this kind of electricity still accounts for less than half a percent of the nation’s total large-scale generation, according to the U.S. Energy Information Administration. In 2023, most geothermal electricity came from California, Nevada, Utah, Hawaii, Oregon, Idaho and New Mexico, where there are reservoirs of steam, or very hot water, close to the surface.

The Energy Department estimates this next generation of geothermal projects, like what Sage is doing, could provide some 90 gigawatts by 2050 — enough to power 65 million homes or more. That hinges on private investment, and on companies like Sage introducing this form of energy to regions where, until now, it’s been thought to be impossible.

How it works

Sage has two main technologies: The first makes electricity out of heat. The company drills wells and fractures hot, dry rock. Then electric pumps push water into those fractures, heating it up, and the hot water gets jettisoned to the surface where it spins a turbine.

But a funny thing happened during testing in Starr County, Texas. In late 2021, the team realized much of their technology could also be used to store energy.

If that works, it could be a big deal. Currently, to store energy at large scale, the United States is adding batteries, mostly lithium-ion type, to solar and wind projects, so they can charge up and send electricity back to the electric grid when the sun is not shining or the wind is not blowing. These batteries typically supply four hours maximum power.

Sage envisions some of its technology placed at solar and wind farms, too. When electricity demand is low, they'll use extra energy from a solar or wind farm to run electric pumps, pumping water into the underground fractures, leaving it there until demand for electricity increases — storing the energy beneath the Earth's surface for hours, days or even weeks.

It's a novel way to use the technology, said Silviu Livescu, lead author on a report looking at the future of geothermal in Texas. Livescu knows Taff and has followed the company's progress.

“It’s the right moment for companies like Sage with a purpose, with a mission and with the technology to show that geothermal indeed is the energy source we need to address climate change,” said Livescu, who co-founded a different geothermal startup in Austin, Texas.

These days, Taff is often out in front, talking with politicians and policymakers about the potential of geothermal. She attended the United Nations COP28 climate talks last year to share her vision for this kind of energy.

Sage has raised $30 million so far and is growing.

It's building a small (3-megawatt), geothermal energy storage system at San Miguel Electric Cooperative, Inc., south of San Antonio this year. It's working with U.S. military facilities in Texas that see geothermal as a way to power their bases securely. Sage recently announced partnerships for heating communities in Bucharest, Romania; clean electricity from geothermal for Meta's data centers, and energy storage and geothermal projects in California.

The company is final-testing a proprietary turbine to more efficiently convert heat to electricity.

Because of her oil and gas background, Taff said she knows geothermal will only be adopted widely if the cost comes down. The mantra at Sage is: It's going to be clean and it's going to be cheap. She's excited to be working in a field she feels is on the cusp of playing a big role in cleaning and stabilizing the electrical grid.

“I’ve never looked back,” she said. “I love what I’m doing and I think it’s going to be transformative.”

Houston startup Sage Geosystems has announced a new $1.9 million deal with the Air Force. Photo via sagegeosystems.com

US Air Force awards Houston geothermal co. $1.9M grant project

big deal

The Department of the Air Force awarded Houston geothermal company Sage Geosystems Inc. a grant of $1.9 million in a first-of-its kind contract to determine whether a power plant using Geopressured Geothermal Systems is able to generate clean energy “needed for a base to achieve energy resilience,” according to a news release. The Sage facility will be the first GGS facility in the world to generate electricity, and the system will be constructed at an off-site test well in Starr County, Texas.

”We are excited to partner with the U.S. Air Force on this geothermal demonstration project,” CEO of Sage Geosystems Cindy Taff says in a news release. “Next generation geothermal technologies, like Sage Geosystems’ GGS, will be critical in providing energy resiliency at U.S. military installations.”

In addition to the grant, the company will match the grant with an additional $1.9 million for the demonstration project. The collaboration with Sage is one of three geothermal pilot projects the DAF has initiated in regards to next-generation geothermal technologies in 2024.

“We feel this is the launch pad of helping not only the DoD but many other applications throughout global markets,” 147th Civil Engineer Squadron Commander Lt Col Christian Campbell says in the release.

According to the DAF, the possibility of a full-scale project at Ellington Field Joint Air Reserve Base in Houston could usher in a new era of clean power producing plants to help meet the requirements for bases.

“This initial contract is a step forward in the Air Force’s push for energy resilience,” Kirk Phillips, director of the Air Force Office of Energy Assurance, adds in the release. “This project will improve Ellington Field’s ability to maintain operations during electrical grid outages and be completely self-sufficient for their energy needs.”

The GGS process works by repurposing fracking technology to extract thermal energy from below the Earth’s surface.GGS also demonstrates the opportunity for the civilian sector by surpassing the intermittency challenges for solar and wind energy generation. GSS can also work towards minimizing land use, which enables the technology to be used in urban areas without relying on transmission line build outs that can be expensive.

“This project, and the future Department of the Air Force projects that it paves the way for, will help to assure that our national security needs are met by our installations during critical emergencies,” Phillips continues.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Renewables to play greater role in powering data centers, JLL says

Data analysis

Renewable energy is evolving as the primary energy source for large data centers, according to a new report.

The 2026 Global Data Center Outlook from commercial real estate services giant JLL points out that the pivot toward big data centers being powered by renewable energy stems from rising electricity costs and tightening carbon reduction requirements. In the data center sector, renewable energy, such as solar and wind power, is expected to outcompete fossil fuels on cost, the report says.

The JLL forecast carries implications for the Houston area’s tech and renewable energy sectors.

As of December, Texas was home to 413 data centers, second only to Virginia at 665, according to Visual Capitalist. Dozens more data centers are in the pipeline, with many of the new facilities slated for the Houston, Austin, Dallas-Fort Worth and San Antonio areas.

Amid Texas’ data center boom, several Houston companies are making inroads in the renewable energy market for data centers. For example, Houston-based low-carbon energy supplier ENGIE North America agreed last May to supply up to 300 megawatts of wind power for a Cipher Mining data center in West Texas.

The JLL report says power, not location or cost, will become the primary factor in selecting sites for data centers due to multi-year waits for grid connections.

“Energy infrastructure has emerged as the critical bottleneck constraining expansion [of data centers],” the report says. “Grid limitations now threaten to curtail growth trajectories, making behind-the-meter generation and integrated battery storage solutions essential pathways for sustainable scaling.”

Behind-the-meter generation refers to onsite energy systems such as microgrids, solar panels and solar battery storage. The report predicts global solar capacity will expand by roughly 100 gigawatts between 2026 and 2030 to more than 10,000 gigawatts.

“Solar will account for nearly half of global renewable energy capacity in 2026, and despite its intermittent properties, solar will remain a key source of sustainable energy for the data center sector for years to come,” the report says.

Thanks to cost and sustainability benefits, solar-plus-storage will become a key element of energy strategies for data centers by 2030, according to the report.

“While some of this energy harvesting will be colocated with data center facilities, much of the energy infrastructure will be installed offsite,” the report says.

Other findings of the report include:

  • AI could represent half of data center workloads by 2030, up from a quarter in 2025.
  • The current five-year “supercycle” of data center infrastructure development may result in global investments of up to $3 trillion by 2030.
  • Nearly 100 gigawatts worth of new data centers will be added between 2026 and 2030, doubling global capacity.

“We’re witnessing the most significant transformation in data center infrastructure since the original cloud migration,” says Matt Landek, who leads JLL’s data center division. “The sheer scale of demand is extraordinary.”

Hyperscalers, which operate massive data centers, are allocating $1 trillion for data center spending between 2024 and 2026, Landek notes, “while supply constraints and four-year grid connection delays are creating a perfect storm that’s fundamentally reshaping how we approach development, energy sourcing, and market strategy.”

Houston-based NRG announces new CEO and succession plan

new leader

Houston-based NRG Energy Inc. announced Jan. 7 that it has appointed Robert J. Gaudette as president and CEO. Gaudette took over as president effective Jan. 7 and will assume the role of CEO April 30, coinciding with the company's next stockholder meeting.

Gaudette, who previously served as executive vice president and president of NRG Business and Wholesale Operations, will succeed Lawrence Coben in the leadership roles. Coben will remain an advisor to NRG through the end of the year and will also continue to serve as board chair until April 30. Antonio Carrillo, lead independent director at NRG, will take over as board chair.

"Rob has played a central role in strengthening NRG’s position as a leader in our industry through strategic growth, operational excellence, and customer-focused innovation," Coben said in the news release. "He is a strong, decisive leader with extensive knowledge of our business, markets, and customers. The Board and I are confident that Rob is the right person to lead NRG forward and take the NRG rocket ship to new heights. I can’t wait to see what comes next.”

Gaudette has been with NRG since 2001. He has served as EVP of NRG Business and Market Operations since 2022 and president of NRG Business and Market Operations since 2024. In these roles, he led NRG’s power generation and oversaw its portfolio of commercial and industrial products and services as well as its market operations, according to the company.

He has held various executive leadership roles at NRG. He earned his bachelor's degree in chemistry from The College of William and Mary and an MBA at Rice University, where he was a Jones Scholar. He also served four years as an Army officer.

“It is an honor to be appointed NRG’s next CEO at this transformative time for the energy sector and our company,” Gaudette said in the release. “With NRG’s electricity, natural gas and smart home portfolio, we are ideally positioned to meet America’s evolving energy needs. I am grateful to Larry and all my NRG colleagues, both past and present, who built our great company and positioned us for the future. I look forward to leading our incredible team to deliver affordable, resilient power for the customers and communities we serve, while creating substantial value for our shareholders.”

In addition to its traditional power generation and electricity businesses, NRG has been working to develop a 1-gigawatt virtual power plant by connecting thousands of decentralized energy sources by 2035 in an effort to meet Texas’ surging energy demands.

The company announced partnerships last year with two California-based companies to bolster home battery use and grow its network. NRG has said the VPP could provide energy to 200,000 homes during peak demand.

10+ must-attend Houston energy events happening in Q1 2026

Mark Your Calendar

Editor's note: With the new year comes a new slate of must-attend events for those in the Houston energy sector. We've rounded up a host of events to put on your calendar for Q1, including some that you can attend this month. Plus, other premier annual events will return in February and March 2026 and are currently offering early-bird, discounted registration. Book now.

Jan. 7-8 — AAPG Subsurface Energy to Power Workshop

This two-day AAPG workshop explores the expanding role of natural gas, geothermal, hydrogen, lithium, and uranium in accelerating electricity capacity. Participants will examine innovative solutions designed to reduce reliance on long-distance transmission lines, pipelines, and other costly infrastructure. Throughout the workshop, attendees will gain insight into both the technical deployment of subsurface resources and the land, legal, and permitting factors that influence project development.

This event begins Jan. 7 at Norris Conference Center at CityCentre. Register here.

Jan. 19-22 — PPIM 2026

The 38th international Pipeline Pigging & Integrity Management Conference and Exhibition takes place over four days at the George R. Brown Convention Center and the Hilton Americas. This industry forum is devoted exclusively to pigging for pipeline maintenance and inspection, engineering assessment, repair, risk management, and NDE. Two days of courses will take place Jan. 19-20, followed by the conference on Jan. 21-22, and the exhibition running Jan. 20-22. Register here.

Jan. 22 — MicroSeismic - Romancing Energy Forum

This forum will feature raw, unfiltered stories from the pioneers who changed the trajectory of American Shale. Attendees will gain insights into the playbooks, decisions, data, and lessons learned behind the biggest discoveries and engineering triumphs in modern energy. Keynote speakers include Tom and Diane Gates of Gates Ranch.

This event begins at 8 am on Jan. 22 at Norris Conference Center at CityCentre. Register here.

Jan. 22 — Houston Downton Luncheon: Beyond the Barrel: Pricing, Transition, and Geopolitics in 2026

Women's Energy Network Houston Chapter hosts this January lunch and learn featuring guest speaker Ha Nguyen with S&P Global Energy. Nguyen will discuss the global energy outlook for 2026, with a focus on strategic drivers, such as decarbonization and EV adoption, and a look at Houston's crucial role in the future of the U.S. market.

This event begins at 11:30 am on Jan. 22 at The Houston Club. Register here.

Feb. 18-20 — NAPE Summit Week 2026

NAPE is the energy industry’s marketplace for the buying, selling, and trading of prospects and producing properties. NAPE brings together all industry disciplines and companies of all sizes, and in 2026 it will introduce three new hubs — offshore, data centers, and critical minerals — for more insights, access, and networking opportunities. The event includes a summit, exhibition, and more.

This event begins Feb. 18 at George R. Brown Convention Center. Register here.

Feb. 24-26 — 2026 Energy HPC & AI Conference

The 2026 Energy HPC & AI Conference marks the 19th year for the Ken Kennedy Institute to convene experts from the energy industry, academia, and national labs to share breakthroughs for HPC and AI technologies. The conference returns to Houston with engaging speaker sessions, a technical talk program, networking receptions, add-on workshops, and more.

This event begins Feb. 24 at Rice University's BRC. Register here.

Feb. 26 — February Transition on Tap

Mix and mingle at Greentown Labs' first Transition on Tap event of the year. Meet the accelerator's newest startup members, who are working on innovations ranging from methane capture to emissions-free manufacturing processes to carbon management.

This event begins at 5:30 pm on Feb. 26 at Greentown Labs Houston. Register here.

March 2-4 — The Future Energy Summit

The Future Energy Summit is a premier global event bringing together visionaries, industry leaders, and energy experts to shape the future of energy. The second edition of the conference will provide a platform for groundbreaking discussions, cutting-edge technologies, and transformative strategies that will accelerate the energy transition.

This event begins March 2. Register here.

March 10-12 — World Hydrogen & Carbon Americas

S&P Global Energy brings together two leading events — Carbon Management Americas and World Hydrogen North America — to form a new must-attend event for those in the hydrogen and carbon industries. More than 800 senior leaders from across the energy value chain will attend this event featuring immersive roundtable discussions, hands-on training, real-world case studies, and unparalleled networking opportunities.

This event begins March 10 at Marriott Marquis Houston. Register here.

March 23-27 — CERAWeek 2026

CERAWeek 2026 will focus on "Convergence and Competition: Energy, Technology and Geopolitics." The industry's foremost thought leaders will convene in Houston to cultivate relationships and exchange transformative ideas during the annual event. Through the lens of 16 dynamic themes, CERAWeek 2026 will explore breakthroughs, cross-industry connections, and powerful partnerships that are accelerating the transformation of the global energy system.

This event begins March 23. Register here.