startups to know

Investors name 10 most-promising energy tech companies at Houston conference

Here's what energy transition companies stood out to Rice Alliance's experts. Photo via Rice Alliance

At the 20th annual Energy Tech Venture Forum presented by Rice Alliance for technology and Entrepreneurship, 11 startups scored recognition from the event's investors who evaluated over 90 early-stage energy transition companies.

"The selection process was both exhilarating and challenging given the incredible ideas we've seen today," says Jason Sidhu, director of information services business engagement at TC Energy, who announced the top companies. "I want to extend my gratitude to every company that participate din this year's Energy Tech Venture Forum. Your commitment to solving energy problems and pursuing ambitions ideas is truly commendable."

In addition to the top 10 most-promising companies, the event's attendees decided the people's choice pick out of the 50 or so pitching companies. The winner of that recognition was Calgary, Alberta-based Galatea Technologies, which has created a tech platform to enhance workflows for operational, financial, and environmental performance.

The top companies, according to the Rice Alliance experts and investors, were:

  • Circular economy startup, Polystyvert. Based in Montreal, the company has created a unique dissolution recycling process that creates a material that can contribute to cutting carbon emissions by up to 90 percent.
  • United Kingdom-based Miricoprovides a tracking technology to its customers to measure climate gases (like methane, carbon dioxide, nitrous oxide, and ammonia), across areas up to half a square mile and in all conditions.
  • ProteinEvolution, from New Haven, Connecticut, taps into a combination of green chemistry and enzyme technology to break down synthetic polymers.
  • Another Canadian company, Ayrton Energy, based in Calgary, created a liquid organic H2 carrier (LOHC) storage technology presents an opportunity for large, scalable and efficient transport of H2 over long distances.
  • Also representing New Haven, Connecticut, Carbon Loop is on a mission to make carbon capture and conversion scalable through carbon dioxide electrolysis using a proprietary catalyst to convert captured carbon dioxide into methanol.d
  • Based in London, Mobilus Labs has designed a new way for frontline communication with an in-helmet hardware and software solution. software solution designed for the frontline workforce.
  • 1s1 Energy, based in California, is working on producing low-cost green hydrogen by creating new materials to unlock unprecedented electrolyzer efficiency, durability, and more.
  • From Skokie, Illinois, Numat is specializing in solutions within Metal-organic framework (MOF) research to enhance the process of separating the hazardous chemicals negatively impacting human health and the environment.
  • Mantel, headquartered in Cambridge, Massachusetts, created a molten borate technology to capture CO2 in a new and efficient way.
  • The lone Houston-based company,Mars Materials is working to produce acrylonitrile using CO2 and biomass to enable decarbonization applications in carbon fiber and wastewater treatment.

Ten companies from around the world were named as most promising. Photo courtesy of Rice

Trending News

A View From HETI

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Trending News