Halliburton has named its latest cohort. Photo courtesy of Halliburton

Seven companies from around the world have been invited to join Halliburton Labs, the company announced today.

Halliburton Labs is an incubator program that helps early-stage energy tech companies through connections, access to facilities, and more.

"We are pleased to welcome these promising energy startups and provide customized support to help them achieve their specific priorities, accelerate commercialization, and increase valuation," says Dale Winger, managing director of the program, in a news release. "Our experienced practitioners and network will help these companies use their time and capital efficiently."

The next Halliburton Labs Finalists Pitch Day, which will feature the ongoing cohort, is planned for Thursday, March 14, in New Orleans in coordination with New Orleans Entrepreneur Week and 3rd Coast Venture Summit. Applications for the program are open until Friday, February 9.

The newest additions to Halliburton Labs are as follows.

One of three Israel-based companies in the cohort, Airovation Technologies is advancing carbon capture and utilization solutions through helping hard-to-abate industries that achieve emissions reduction targets through its proprietary carbon mineralization technology. Through transforming point-source CO2 emissions into circular chemicals and building materials, Airovation is developing a scalable pathway for industrial emitters to decarbonize with multiple revenue streams.

“Industrial emitters are seeking economic ways to decarbonize,” Marat Maayan, founder and CEO at Airovation Technologies, says. “We are excited to accelerate our commercialization in the United States with Halliburton Labs, leveraging their expertise, capabilities and network."

Ayrton Energy, based in Calgary, is developing liquid organic hydrogen carrier storage technology to enable the large-scale, efficient transportation of hydrogen over extended distances without hydrogen loss and pipeline corrosion. This storage technology provides a high-density hydrogen storage medium without the need for cryogenics or high-pressure systems, which differs from the existing technology out there. This improves the safety and efficiency of hydrogen storage while enabling the use of existing fuel infrastructure for transportation, including tanks, transport trucks, and pipelines.

“Our mission is to enable hydrogen adoption by solving the key challenges in hydrogen storage and transportation,” Ayrton CEO Natasha Kostenuk says.

Cache Energy, based out of the University of Illinois Research Park, is developing a new long duration energy storage solution, which scales to interseasonal durations, through a low-cost solid fuel. Once charged, the storage material stores energy at room temperature, with near zero loss in time and can be safely stored and transported anywhere energy is needed.

“We are strong believers of leveraging existing infrastructure and expertise to fast track decarbonization goals,” Arpit Dwivedi, founder and, says CEO of Cache Energy. “We look forward to this collaboration and learning from Halliburton's manufacturing and operational expertise, as we scale our technology.”

From Be'er Sheva City in Israel, CENS develops enhanced dry dispersion technology based on dry-treated carbon nanotubes that enable high energy density, high power, and outstanding cycle performance in Li-ion batteries. The technology is differentiated because it can be applied to any type of lithim-ion battery and its implementation can be seamlessly integrated into the production line.

“Our goal is to develop ground-breaking technologies that will become disruptive technologies to market at a massive scale,” says CEO Moshe Johary. “With the help and vast experience of Halliburton Labs' team, we could achieve advancements in production capabilities while extending our footprint in the market.”

Casper, Wyoming-based Disa Technologies provides solutions to the mining and remediation industries. Disa utilizes patented minerals liberation technology to more efficiently isolate target minerals and mitigate environmental impacts to its users. Disa platforms treat a wide array of critical minerals that are essential to the economy and our way of life.

“We are excited to have Halliburton's support as we scale-up our technology and deliver innovative minerals processing solutions that disrupt industry best practices, enhance global resource utilization, and benefit the environment and the communities we serve," Greyson Buckingham, Disa's CEO and president, says.

Marel Power Solutions, headquartered from Michigan, is innovating electrification through its novel powerstack technology. These materials-efficient, quickly deployable, and scalable power-stacks, encapsulating advanced cooling technology, redefine power conversion in mobility, industrial, and renewables spaces.

“We're thrilled to contribute to global climate sustainability. Our collaboration with Halliburton will accelerate the electrification transition across industries. Marel's technology not only maximizes heat evacuation from densely packed power semiconductors but, more importantly, offers substantial savings in cost, weight, size, and time, making it transformative in the evolving landscape of electrification,” Marel CEO Amrit Vivekanand says.

And lastly, XtraLit is an Israeli company that develops a technology for direct lithium extraction from brines. The technology enables efficient and economically justified processing of brines even with relatively low lithium concentrations. Application of the extraction technology will allow mineral providers to unlock new significant sources of lithium that are critical to meet growing demand.

“Oil and gas industry produced waters might become a substantial resource for lithium production,” says XtraLit CEO, Simon Litsyn. “XtraLit will cooperate with Halliburton on optimization of produced water treatment for further increasing the efficiency of the lithium extraction process.”

Here's what energy transition companies stood out to Rice Alliance's experts. Photo via Rice Alliance

Investors name 10 most-promising energy tech companies at Houston conference

startups to know

At the 20th annual Energy Tech Venture Forum presented by Rice Alliance for technology and Entrepreneurship, 11 startups scored recognition from the event's investors who evaluated over 90 early-stage energy transition companies.

"The selection process was both exhilarating and challenging given the incredible ideas we've seen today," says Jason Sidhu, director of information services business engagement at TC Energy, who announced the top companies. "I want to extend my gratitude to every company that participate din this year's Energy Tech Venture Forum. Your commitment to solving energy problems and pursuing ambitions ideas is truly commendable."

In addition to the top 10 most-promising companies, the event's attendees decided the people's choice pick out of the 50 or so pitching companies. The winner of that recognition was Calgary, Alberta-based Galatea Technologies, which has created a tech platform to enhance workflows for operational, financial, and environmental performance.

The top companies, according to the Rice Alliance experts and investors, were:

  • Circular economy startup, Polystyvert. Based in Montreal, the company has created a unique dissolution recycling process that creates a material that can contribute to cutting carbon emissions by up to 90 percent.
  • United Kingdom-based Mirico provides a tracking technology to its customers to measure climate gases (like methane, carbon dioxide, nitrous oxide, and ammonia), across areas up to half a square mile and in all conditions.
  • Protein Evolution, from New Haven, Connecticut, taps into a combination of green chemistry and enzyme technology to break down synthetic polymers.
  • Another Canadian company, Ayrton Energy, based in Calgary, created a liquid organic H2 carrier (LOHC) storage technology presents an opportunity for large, scalable and efficient transport of H2 over long distances.
  • Also representing New Haven, Connecticut, Carbon Loop is on a mission to make carbon capture and conversion scalable through carbon dioxide electrolysis using a proprietary catalyst to convert captured carbon dioxide into methanol.d
  • Based in London, Mobilus Labs has designed a new way for frontline communication with an in-helmet hardware and software solution. software solution designed for the frontline workforce.
  • 1s1 Energy, based in California, is working on producing low-cost green hydrogen by creating new materials to unlock unprecedented electrolyzer efficiency, durability, and more.
  • From Skokie, Illinois, Numat is specializing in solutions within Metal-organic framework (MOF) research to enhance the process of separating the hazardous chemicals negatively impacting human health and the environment.
  • Mantel, headquartered in Cambridge, Massachusetts, created a molten borate technology to capture CO2 in a new and efficient way.
  • The lone Houston-based company, Mars Materials is working to produce acrylonitrile using CO2 and biomass to enable decarbonization applications in carbon fiber and wastewater treatment.

Ten companies from around the world were named as most promising. Photo courtesy of Rice

Next month, 96 startups will pitch at an annual event focused on the future of energy. Here's who will be there. Photo via rice.edu

Exclusive: Rice Alliance announces participants ahead of 20th annual energy symposium

where to be

Dozens of companies will be a part of an upcoming energy-focused conference at Rice University — from climate tech startups to must-see keynote speakers.

The 20th Annual Rice Alliance Energy Tech Venture Forum will take place on September 21 at Rice University’s Jones Graduate School of Business. Anyone who's interested in learning more about the major players in the low-carbon future in Houston and beyond should join the industry leaders, investors, and promising energy and cleantech startups in attendance.

This year's keynote speakers include Christina Karapataki, partner at Breakthrough Energy Ventures, the venture capital fund backed by Bill Gates; Scott Nyquist, vice chairman at Houston Energy Transition Initiative, founded by the Greater Houston Partnership; and Jeff Tillery, COO at Veriten.

Nearly 100 startups will also be pitching throughout the day, and at the end of the program, the most-promising companies — according to investors — will be revealed. See below for the 2023 selection of companies.

Presenting companies:

  • Element Resources
  • Eugenie AI
  • Flash H2 Synthesis from Waste Plastic at Zero Net Cost
  • Fluid Efficiency
  • Galatea Technologies
  • Heimdal
  • Impact Technology SystemsAS
  • INGU
  • Lithos
  • Luminescent
  • Mantel
  • Mars Materials
  • Microgrid Labs
  • Mirico
  • Mobilus Labs
  • Muon Vision
  • Nano Nuclear
  • NobleAI
  • Numat
  • Ourobio
  • Planckton Data Technologies
  • Polystyvert
  • Princeton NuEnergy
  • Protein Evolution
  • Qult Technologies
  • Sage Geosystems
  • Salient Predictions
  • Sawback Technologies
  • SHORELINE AI
  • Solidec
  • Spectral Sensor Solutions
  • Teren
  • Terradote
  • TexPower
  • Thiozen
  • Technology from the Lab of Dr. James Tour
  • Volexion
  • Xecta

CEA Demo Day:

  • Ayrton Energy
  • Carbix
  • CryoDesalination
  • Digital Carbon Bank
  • EarthEn
  • H Quest Vanguard
  • Highwood Emissions Management
  • Icarus RT
  • Khepra
  • Natrion
  • Oceanways
  • Relyion Energy
  • Triton Anchor
  • TROES

Office hours only:

  • 1s1 Energy
  • AKOS Energy
  • Aperta Systems
  • Atargis Energy
  • Ayas
  • C-Power
  • C-Quester
  • Carbon Loop
  • Deep Anchor Solutions
  • DG Matrix
  • Drishya AI Labs
  • Earthbound.ai
  • EarthBridge Energy
  • Enoverra
  • equipcast
  • ezNG Solutions
  • Feelit Technologies
  • FluxWorks
  • Forge
  • Horne Technologies
  • Imperium Technologies
  • LiCAP Technologies
  • Make My Day
  • Moblyze
  • MyPass Global
  • NovaSpark Energy
  • Octet Scientific
  • Perceptive Sensor Technologies
  • PetroBricks
  • Piersica
  • Poseidon Minerals
  • Predyct
  • RIvotto
  • Roboze
  • Talisea
  • ThermoLift Solutions
  • Trout Software
  • Tuebor Energy
  • Undesert Corporation
  • Viridos
  • Vroom Solar
  • Well Information Technologies
  • WellWorth
  • Zsense Systems
Fifteen startups — with clean energy solutions involving everything from solar energy to hydrogen — are joining Rice Alliance's Clean Energy Accelerator later this summer. Photo via Getty Images

Houston cleantech accelerator reveals 15 startups to 2023 cohort

energy 2.0

A clean energy program has announced its third cohort and named the 15 startups that were accepted into to the accelerator.

The Rice Alliance's Clean Energy Accelerator revealed its 2023 cohort that will be in the 10-week program that kicks of July 25. CEA, a hybrid program based out of the Ion, will wrap up with a Demo Day alongside the 20th Annual Rice Alliance Energy Tech Venture Forum on September 21.

The accelerator, led by Kerri Smith and Matt Peña, provides the cohort with programming, networking, and mentorship from six executives in residence — Nathan Ball, Fatimah Bello, Michael Egan, Michael Evans, Stephen Sims, and Deanna Zhang.

Since the Clean Energy Accelerator launched in 2021, the program has supported 29 ventures that have gone on to raise over $75 million in funding, identified and launched pilots, and created jobs, According to Rice, many of these companies relocated to Houston.

Class 3, which has already raised $23.3 million in funding, hails from four countries and seven states and are addressing a range of energy solutions — from advanced materials, carbon management/capture, energy storage, hydrogen, solar energy, wind energy, and more. They were selected by a screening committee consisting of more than 50 industry experts, investors, energy leaders, and entrepreneurs.

The third class, as announced by Rice Alliance, is as follows:

  • Ayrton Energy, based in Alberta, Canada, provides hydrogen storage technology that improves hydrogen transport logistics for distributed energy applications.
  • Headquartered in Massachusetts, Carbix transforms atmospheric carbon dioxide emissions into building materials using proprietary reactor technology.
  • Houston-based CryoDesalination lowers the carbon footprint and cost of removing salts and heavy metals from water and industrial effluents.
  • Digital Carbon Bank, based in Alberta, Canada, provides a carbon solution tailored for the energy industry.
  • Chandler, Arizona-based EarthEn provides compressed carbon dioxide-based energy storage and artificial intelligence solutions allowing grid owners/operators to be completely renewable.
  • H Quest Vanguard, from Pittsburgh, provides green hydrogen at a five to 10 times lower cost to users of natural gas to decarbonize industrial heat.
  • Calgary, Alberta-based Highwood Emissions Management's SaaS platform allows oil and gas companies to understand their emissions and develop robust plans to reduce them.
  • Icarus RT, from San Diego, California, improves photovoltaic efficiency while enabling useful heat energy storage.
  • Los Altos, California-based Khepra has developed a chemical manufacturing platform for the low-cost, sustainable production of agrochemicals.
  • Binghamton, New York-based Natrion’s electrolyte is a drop-in solid-state battery component that can be rapidly implemented into existing batteries.
  • Oceanways, based in London, provides low-cost, flexible and scalable zero-emission underwater "virtual pipelines" to energy producers.
  • Relyion Energy, from Santa Clara, California, is developing battery usage and intelligence solutions with deeper data and insights for retired electric vehicle batteries.
  • Massachusetts-based Triton Anchor provides a more cost-effective anchoring solution for offshore clean energy with minimal environmental impact.
  • TROES, from Markham, Ontario, provides a 4-in-1 microgrid solution with integrated hardware and software for a streamlined energy storage experience.
  • Mexico City-based Tycho Solutions supports clean energy project developers by saving time and money during the critical project-siting process.
------

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Micro-nuclear reactor to launch next year at Texas A&M innovation campus

nuclear pilot

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”

Expert examines how far Texas has come in energy efficiency

Guest Column

Texas leads the nation in energy production, providing about one-fourth of the country’s domestically produced primary energy. It is also the largest energy-consuming state, accounting for about one-seventh of the nation’s total energy use, and ranks sixth among the states in per capita energy consumption.

However, because Texas produces significantly more energy than it consumes, it stands as the nation’s largest net energy supplier. October marked National Energy Awareness Month, so this is an ideal time to reflect on how far Texas has come in improving energy efficiency.

Progress in Clean Energy and Grid Resilience

Texas continues to lead the nation in clean energy adoption and grid modernization, particularly in wind and solar power. With over 39,000 MW of wind capacity, Texas ranks first in the country in wind-powered electricity generation, now supplying more than 10% of the state’s total electricity.

This growth was significantly driven by the Renewable Portfolio Standard (RPS), which requires utility companies to produce new renewable energy in proportion to their market share. Initially, the RPS aimed to generate 10,000 MW of renewable energy capacity by 2025. Thanks to aggressive capacity building, this ambitious target was reached much earlier than anticipated.

Solar energy is also expanding rapidly, with Texas reaching 16 GW of solar capacity as of April 2024. The state has invested heavily in large-scale solar farms and supportive policies, contributing to a cleaner energy mix.

Texas is working to integrate both wind and solar to create a more resilient and cost-effective grid. Efforts to strengthen the grid also include regulatory changes, winterization mandates, and the deployment of renewable storage solutions.

While progress is evident, experts stress the need for continued improvements to ensure grid reliability during extreme weather events, when we can’t rely on the necessities for these types of energy sources to thrive. To put it simply, the sun doesn’t always shine, and the wind doesn’t always blow.

Federal Funding Boosts Energy Efficiency

In 2024, Texas received $22.4 million, the largest share of a $66 million federal award, from the U.S. Department of Energy’s Energy Efficiency Revolving Loan Fund Capitalization Grant Program.

The goal of this funding is to channel federal dollars into local communities to support energy-efficiency projects through state-based loans and grants. According to the DOE, these funds can be used by local businesses, homeowners, and public institutions for energy audits, upgrades, and retrofits that reduce energy consumption.

The award will help establish a new Texas-based revolving loan fund modeled after the state’s existing LoanSTAR program, which already supports cost-effective energy retrofits for public facilities and municipalities. According to the Texas Comptroller, as of 2023, the LoanSTAR program had awarded more than 337 loans totaling over $600 million.

In addition to expanding the revolving loan model, the state plans to use a portion of the DOE funds to offer free energy audit services to the public. The grant program is currently under development.

Building on this momentum, in early 2025, Texas secured an additional $689 million in federal funding to implement the Home Energy Performance-Based, Whole House (HOMES) rebate program and the Home Electrification and Application Rebate (HEAR) program.

This investment is more than five times the state’s usual energy efficiency spending. Texas’s eight private Transmission and Distribution Utilities typically spend about $110 million annually on such measures. The state will have multiple years to roll out both the revolving loan and rebate programs.

However, valuable federal tax incentives for energy-efficient home improvements are set to expire on December 31, 2025, including:

  • The Energy Efficiency Home Improvement Credit allows homeowners to claim up to $3,200 per year in federal income tax credits, covering 30% of the cost of eligible upgrades, such as insulation, windows, doors, and high-efficiency heating and cooling systems.
  • The Residential Clean Energy Credit provides a 30% income tax credit for the installation of qualifying clean energy systems, including rooftop solar panels, wind turbines, geothermal heat pumps, and battery storage systems.

As these incentives wind down, the urgency grows for Texas to build on the positive gains from the past several years despite reduced federal funding. The state has already made remarkable strides in clean energy production, grid modernization, and energy-efficiency investments, but the path forward requires a strategic and inclusive approach to energy planning. Through ongoing state-federal collaboration, community-driven initiatives, and forward-looking policy reforms, Texas can continue its progress, ensuring that future energy challenges are met with sustainable and resilient solutions.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.