The Rice Alliance Clean Energy Accelerator, a hybrid program based out of the Ion, has named its latest cohort. Photo courtesy of the Ion

The Rice Alliance Clean Energy Accelerator has named 12 early-stage energy technology companies to its latest cohort.

The companies, which hail from six states and two countries, are providing solutions across carbon management, advanced materials, hydrogen, solar, and more. The program, which operates in a hybrid capacity based out of the Ion, will run for 10 weeks beginning July 9 and culminating in a demo day alongside the 21st Rice Alliance Energy Tech Venture Forum on September 12. Throughout the duration, the companies will come to Houston three times.

"As Houston’s preeminent energy startup accelerator, this is an open door to the region’s energy ecosystem for ventures from around the world and puts them through a rigorous curriculum to bolster their fundraising efforts, prepare them for accelerated adoption into the marketplace and expand their connections for potential pilots, partnerships and sales," per a Rice Alliance news release.

This cohort's executives-in-residence, or XiRs, include Tim Franklin-Hensler, John Jeffers, Ritu Sachdeva and Nick Tillmann. In addition to these innovators — who bring their expertise, mentorship, and strategic growth planning — the program is ed by the Rice Alliance’s Kerri Smith and Matt Peña.

Class 4 for the Rice Alliance Clean Energy Accelerator includes:

  • 1s1 Energy, based in Portola Valley, California, develops electrolyzers with boron-based materials so that utilities and heavy industry can produce low-cost green hydrogen to decarbonize existing and future businesses.
  • Houston-based Capwell provides a cost-effective, modular, and easily transportable system that eliminates methane emissions from wells for state governments and oil and as companies.
  • CarboMat, from Calgary, Alberta, provides a clean technology that produces low-cost, sustainable, and mid-tier grade carbon fibers at a 60 percent reduced production cost and 50 percent reduced GHG emissions to composite manufacturers in industries that require large volumes of inexpensive carbon fibers for production of commodity grade products.
  • Cleveland, Ohio-headquartered Corrolytics offers cutting-edge technology that detects corrosion on-site and in near real-time, providing accurate insights into microbial corrosion and general corrosion.
  • Geolabe, from Los Almos, New Mexico, provides an automated methane monitoring system that helps organizations measure environmental performance and introduce and prioritize remedial actions.
  • Kaizen, which operates in Tomball just outside of Houston, provides hydrogen based microgrids that enable fleet electrification at sites that are grid constrained or off grid. The solutions emit no local emissions and reduce global emissions.
  • Los Angeles-based Mitico offers services and equipment to capture carbon dioxide with a patent-pending granulated metal carbonate sorption technology captures over 95 percent of the CO2 emitted from post-combustion point sources.
  • OceanBit, headquartered in Honolulu, provides ocean thermal energy technologies and power plants that delivers abundant, affordable, base load power to utilities and companies who need a firm, dispatchable, and 24/7 carbon-free source of electricity.
  • From Ontario, Canada, QEA Tech provides detailed building envelope energy audits using drones, thermography, and proprietary AI based software.
  • Houston-based Sensytec offers patented sensors, delivering real-time, accurate material performance data of concrete and advanced building materials.
  • Vroom Solar, based in Springfield, Missouri, provides Smart Solar Management technology that optimizes solar and optional AC power differently at a lower cost and smaller footprint for solar customers who need affordable, efficient, and user-friendly power anywhere.
  • VulcanX, from Vancouver, Canada, provides hydrogen and solid carbon to gas utilities, steel manufacturers and ammonia producers who require low-cost and low-emission hydrogen.

Since launching in 2021, the Clean Energy Accelerator has accelerated 43 ventures that have raised more than $166 million in funding. According to the program, these companies have piloted their technologies, connected with investors, created jobs, and many relocated to Houston.

The 2023 cohort included 15 clean energy companies.

Here's what energy transition companies stood out to Rice Alliance's experts. Photo via Rice Alliance

Investors name 10 most-promising energy tech companies at Houston conference

startups to know

At the 20th annual Energy Tech Venture Forum presented by Rice Alliance for technology and Entrepreneurship, 11 startups scored recognition from the event's investors who evaluated over 90 early-stage energy transition companies.

"The selection process was both exhilarating and challenging given the incredible ideas we've seen today," says Jason Sidhu, director of information services business engagement at TC Energy, who announced the top companies. "I want to extend my gratitude to every company that participate din this year's Energy Tech Venture Forum. Your commitment to solving energy problems and pursuing ambitions ideas is truly commendable."

In addition to the top 10 most-promising companies, the event's attendees decided the people's choice pick out of the 50 or so pitching companies. The winner of that recognition was Calgary, Alberta-based Galatea Technologies, which has created a tech platform to enhance workflows for operational, financial, and environmental performance.

The top companies, according to the Rice Alliance experts and investors, were:

  • Circular economy startup, Polystyvert. Based in Montreal, the company has created a unique dissolution recycling process that creates a material that can contribute to cutting carbon emissions by up to 90 percent.
  • United Kingdom-based Mirico provides a tracking technology to its customers to measure climate gases (like methane, carbon dioxide, nitrous oxide, and ammonia), across areas up to half a square mile and in all conditions.
  • Protein Evolution, from New Haven, Connecticut, taps into a combination of green chemistry and enzyme technology to break down synthetic polymers.
  • Another Canadian company, Ayrton Energy, based in Calgary, created a liquid organic H2 carrier (LOHC) storage technology presents an opportunity for large, scalable and efficient transport of H2 over long distances.
  • Also representing New Haven, Connecticut, Carbon Loop is on a mission to make carbon capture and conversion scalable through carbon dioxide electrolysis using a proprietary catalyst to convert captured carbon dioxide into methanol.d
  • Based in London, Mobilus Labs has designed a new way for frontline communication with an in-helmet hardware and software solution. software solution designed for the frontline workforce.
  • 1s1 Energy, based in California, is working on producing low-cost green hydrogen by creating new materials to unlock unprecedented electrolyzer efficiency, durability, and more.
  • From Skokie, Illinois, Numat is specializing in solutions within Metal-organic framework (MOF) research to enhance the process of separating the hazardous chemicals negatively impacting human health and the environment.
  • Mantel, headquartered in Cambridge, Massachusetts, created a molten borate technology to capture CO2 in a new and efficient way.
  • The lone Houston-based company, Mars Materials is working to produce acrylonitrile using CO2 and biomass to enable decarbonization applications in carbon fiber and wastewater treatment.

Ten companies from around the world were named as most promising. Photo courtesy of Rice

Next month, 96 startups will pitch at an annual event focused on the future of energy. Here's who will be there. Photo via rice.edu

Exclusive: Rice Alliance announces participants ahead of 20th annual energy symposium

where to be

Dozens of companies will be a part of an upcoming energy-focused conference at Rice University — from climate tech startups to must-see keynote speakers.

The 20th Annual Rice Alliance Energy Tech Venture Forum will take place on September 21 at Rice University’s Jones Graduate School of Business. Anyone who's interested in learning more about the major players in the low-carbon future in Houston and beyond should join the industry leaders, investors, and promising energy and cleantech startups in attendance.

This year's keynote speakers include Christina Karapataki, partner at Breakthrough Energy Ventures, the venture capital fund backed by Bill Gates; Scott Nyquist, vice chairman at Houston Energy Transition Initiative, founded by the Greater Houston Partnership; and Jeff Tillery, COO at Veriten.

Nearly 100 startups will also be pitching throughout the day, and at the end of the program, the most-promising companies — according to investors — will be revealed. See below for the 2023 selection of companies.

Presenting companies:

  • Element Resources
  • Eugenie AI
  • Flash H2 Synthesis from Waste Plastic at Zero Net Cost
  • Fluid Efficiency
  • Galatea Technologies
  • Heimdal
  • Impact Technology SystemsAS
  • INGU
  • Lithos
  • Luminescent
  • Mantel
  • Mars Materials
  • Microgrid Labs
  • Mirico
  • Mobilus Labs
  • Muon Vision
  • Nano Nuclear
  • NobleAI
  • Numat
  • Ourobio
  • Planckton Data Technologies
  • Polystyvert
  • Princeton NuEnergy
  • Protein Evolution
  • Qult Technologies
  • Sage Geosystems
  • Salient Predictions
  • Sawback Technologies
  • SHORELINE AI
  • Solidec
  • Spectral Sensor Solutions
  • Teren
  • Terradote
  • TexPower
  • Thiozen
  • Technology from the Lab of Dr. James Tour
  • Volexion
  • Xecta

CEA Demo Day:

  • Ayrton Energy
  • Carbix
  • CryoDesalination
  • Digital Carbon Bank
  • EarthEn
  • H Quest Vanguard
  • Highwood Emissions Management
  • Icarus RT
  • Khepra
  • Natrion
  • Oceanways
  • Relyion Energy
  • Triton Anchor
  • TROES

Office hours only:

  • 1s1 Energy
  • AKOS Energy
  • Aperta Systems
  • Atargis Energy
  • Ayas
  • C-Power
  • C-Quester
  • Carbon Loop
  • Deep Anchor Solutions
  • DG Matrix
  • Drishya AI Labs
  • Earthbound.ai
  • EarthBridge Energy
  • Enoverra
  • equipcast
  • ezNG Solutions
  • Feelit Technologies
  • FluxWorks
  • Forge
  • Horne Technologies
  • Imperium Technologies
  • LiCAP Technologies
  • Make My Day
  • Moblyze
  • MyPass Global
  • NovaSpark Energy
  • Octet Scientific
  • Perceptive Sensor Technologies
  • PetroBricks
  • Piersica
  • Poseidon Minerals
  • Predyct
  • RIvotto
  • Roboze
  • Talisea
  • ThermoLift Solutions
  • Trout Software
  • Tuebor Energy
  • Undesert Corporation
  • Viridos
  • Vroom Solar
  • Well Information Technologies
  • WellWorth
  • Zsense Systems
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Wind and solar supplied over a third of ERCOT power, report shows

power report

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA).

The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024.

Together, wind and solar supplied 36 percent of ERCOT’s electricity in the first nine months of 2025.

Heavier reliance on wind and solar power comes amid greater demand for ERCOT electricity. In the first nine months of 2025, ERCOT recorded the fastest growth in electricity demand (5 percent) among U.S. power grids compared with the same period last year, according to the report.

“ERCOT’s electricity demand is forecast to grow faster than that of any other grid operator in the United States through at least 2026,” the report says.

EIA forecasts demand for ERCOT electricity will climb 14 percent in the first nine months of 2026 compared with the same period this year. This anticipated jump coincides with a number of large data centers and cryptocurrency mining facilities coming online next year.

The ERCOT grid covers about 90 percent of Texas’ electrical load.

Micro-nuclear reactor to launch next year at Texas A&M innovation campus

nuclear pilot

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”