Houston startup Sage Geosystems has announced a new $1.9 million deal with the Air Force. Photo via sagegeosystems.com

The Department of the Air Force awarded Houston geothermal company Sage Geosystems Inc. a grant of $1.9 million in a first-of-its kind contract to determine whether a power plant using Geopressured Geothermal Systems is able to generate clean energy “needed for a base to achieve energy resilience,” according to a news release. The Sage facility will be the first GGS facility in the world to generate electricity, and the system will be constructed at an off-site test well in Starr County, Texas.

”We are excited to partner with the U.S. Air Force on this geothermal demonstration project,” CEO of Sage Geosystems Cindy Taff says in a news release. “Next generation geothermal technologies, like Sage Geosystems’ GGS, will be critical in providing energy resiliency at U.S. military installations.”

In addition to the grant, the company will match the grant with an additional $1.9 million for the demonstration project. The collaboration with Sage is one of three geothermal pilot projects the DAF has initiated in regards to next-generation geothermal technologies in 2024.

“We feel this is the launch pad of helping not only the DoD but many other applications throughout global markets,” 147th Civil Engineer Squadron Commander Lt Col Christian Campbell says in the release.

According to the DAF, the possibility of a full-scale project at Ellington Field Joint Air Reserve Base in Houston could usher in a new era of clean power producing plants to help meet the requirements for bases.

“This initial contract is a step forward in the Air Force’s push for energy resilience,” Kirk Phillips, director of the Air Force Office of Energy Assurance, adds in the release. “This project will improve Ellington Field’s ability to maintain operations during electrical grid outages and be completely self-sufficient for their energy needs.”

The GGS process works by repurposing fracking technology to extract thermal energy from below the Earth’s surface.GGS also demonstrates the opportunity for the civilian sector by surpassing the intermittency challenges for solar and wind energy generation. GSS can also work towards minimizing land use, which enables the technology to be used in urban areas without relying on transmission line build outs that can be expensive.

“This project, and the future Department of the Air Force projects that it paves the way for, will help to assure that our national security needs are met by our installations during critical emergencies,” Phillips continues.

The six finalists for the sustainability category for the 2023 Houston Innovation Awards weigh in on their challenges overcome. Photos courtesy

4 biggest challenges of Houston-based sustainability startups

Houston innovation awards

Six Houston-area sustainability startups have been named finalists in the 2023 Houston Innovation Awards, but they didn't achieve this recognition — as well as see success for their businesses — without any obstacles.

The finalists were asked what their biggest challenges have been. From funding to market adoption, the sustainability companies have had to overcome major obstacles to continue to develop their businesses.

The awards program — hosted by EnergyCapital's sister site, InnovationMap, and Houston Exponential — will name its winners on November 8 at the Houston Innovation Awards. The program was established to honor the best and brightest companies and individuals from the city's innovation community. Eighteen energy startups were named as finalists across all categories, but the following responses come from the finalists in the sustainability category specifically.

    Click here to secure your tickets to see who wins.

    1. Securing a commercial pilot

    "As an early-stage clean energy developer, we struggled to convince key suppliers to work on our commercial pilot project. Suppliers were skeptical of our unproven technology and, given limited inventory from COVID, preferred to prioritize larger clients. We overcame this challenge by bringing on our top suppliers as strategic investors. With a long-term equity stake in Fervo, leading oilfield services companies were willing to provide Fervo with needed drilling rigs, frack crews, pumps, and other equipment." — Tim Latimer, founder and CEO of Fervo Energy

    2. Finding funding

    "Securing funding in Houston as a solo cleantech startup founder and an immigrant with no network. Overcome that by adopting a milestone-based fundraising approach and establishing credibility through accelerator/incubator programs." — Anas Al Kassas, CEO and founder of INOVUES

    "The biggest challenge has been finding funding. Most investors are looking towards software development companies as the capital costs are low in case of a risk. Geothermal costs are high, but it is physical technology that needs to be implemented to safety transition the energy grid to reliable, green power." — Cindy Taff, CEO of Sage Geosystems

    3. Market adoption

    "Market adoption by convincing partners and government about WHP as a solution, which is resource-intensive. Making strides by finding the correct contacts to educate." — Janice Tran, CEO and co-founder of Kanin Energy

    "We are creating a brand new financial instrument at the intersection of carbon markets and power markets, both of which are complicated and esoteric. Our biggest challenge has been the cold-start problem associated with launching a new product that has effectively no adoption. We tackled this problem by leading the Energy Storage Solutions Consortium (a group of corporates and battery developers looking for sustainability solutions in the power space), which has opened up access to customers on both sides of our marketplace. We have also leveraged our deep networks within corporate power procurement and energy storage development to talk to key decision-makers at innovative companies with aggressive climate goals to become early adopters of our products and services." — Emma Konet, CTO and co-founder of Tierra Climate

    4. Long scale timelines

    "Scaling and commercializing industrial technologies takes time. We realized this early on and designed the eXERO technology to be scalable from the onset. We developed the technology at the nexus of traditional electrolysis and conventional gas processing, taking the best of both worlds while avoiding their main pitfalls." — Claus Nussgruber, CEO of Utility Global

    Ad Placement 300x100
    Ad Placement 300x600

    CultureMap Emails are Awesome

    Meta to buy all power from new ENGIE Texas solar farm

    power purchase

    Meta, the parent company of social media platform Facebook, has agreed to buy all of the power from a $900 million solar farm being developed near Abilene by Houston-based energy company ENGIE North America.

    The 600-megawatt Swenson Ranch solar farm, located in Stonewall County, will be the largest one ever built in the U.S. by ENGIE. The solar farm is expected to go online in 2027.

    Meta will use electricity generated by the solar farm to power its U.S. data centers. All told, Meta has agreed to purchase more than 1.3 gigawatts of renewable energy from four ENGIE projects in Texas.

    “This project marks an important step forward in the partnership between our two companies and their shared desire to promote a sustainable and competitive energy model,” Paulo Almirante, ENGIE’s senior executive vice president of renewable and flexible power, said in a news release.

    In September, ENGIE North America said it would collaborate with Prometheus Hyperscale, a developer of sustainable liquid-cooled data centers, to build data centers at ENGIE-owned renewable energy and battery storage facilities along the I-35 corridor in Texas. The corridor includes Austin, Dallas-Fort Worth, San Antonio and Waco.

    The first projects under the ENGIE-Prometheus umbrella are expected to go online in 2026.

    ENGIE and Prometheus said their partnership “brings together ENGIE's deep expertise in renewables, batteries, and energy management and Prometheus' highly efficient liquid-cooled data center design to meet the growing demand for reliable, sustainable compute capacity — particularly for AI and other high-performance workloads.”

    Fervo named to prestigious list of climate tech companies to watch

    top honor

    Houston-based Fervo Energy has received yet another accolade—MIT Technology Review named the geothermal energy startup to its 2025 list of the 10 global climatetech companies to watch.

    Fervo, making its second appearance on the third annual list, harnesses heat from deep below the ground to generate clean geothermal energy, MIT Technology Review noted. Fervo is one of four U.S. companies to land on the list.

    Fervo “uses fracking techniques to create geothermal reservoirs capable of delivering enough electricity to power massive data centers and hundreds of thousands of homes,” MIT Technology Review said.

    MIT Technology Review said it produces the annual list to draw attention to promising climatetech companies that are working to decarbonize major sectors of the economy.

    “Though the political and funding landscape has shifted dramatically in the US since the last time we put out this list,” MIT Technology Review added, “nothing has altered the urgency of the climate dangers the world now faces — we need to rapidly curb greenhouse gas emissions to avoid the most catastrophic impacts of climate change.”

    In addition to MIT Technology Review’s companies-to-watch list, Fervo has appeared on similar lists published by Inc.com, Time magazine and Climate Insider.

    In an essay accompanying MIT Technology Review’s list, Microsoft billionaire Bill Gates said his Breakthrough Energy Ventures investment group has invested in more than 150 companies, including Fervo and another company on the MIT Technology Review list, Redwood Materials.

    In his essay, Gates wrote that ingenuity is the best weapon against climate change.

    Yet climate technology innovations “offer more than just a public good,” he said. “They will remake virtually every aspect of the world’s economy in the coming years, transforming energy markets, manufacturing, transportation, and many types of industry and food production. Some of these efforts will require long-term commitments, but it’s important that we act now. And what’s more, it’s already clear where the opportunities lie.”

    In a recent blog post highlighting Fervo, Gates predicted geothermal will eventually supply up to 20 percent of the world’s electricity, up from his previous estimate of as much as 5 percent.

    Fervo is one of the pioneers in geothermal energy. Gates and other investors have pumped $982 million into Fervo since its founding in 2017. With an estimated valuation of $1.4 billion, Fervo has achieved unicorn status, meaning its valuation as a private company exceeds $1 billion.

    Aside from Breakthrough Energy Ventures, oilfield services provider Liberty Energy is a Fervo investor. U.S. Energy Secretary Chris Wright was chairman and CEO of Denver-based Liberty Energy before assuming his federal post.

    Axios reported on Oct. 1 that Fervo is raising a $300 million series E round, which would drive up the startup’s valuation. News of the $300 million round comes as the company gears up for a possible IPO, according to Axios.

    Fervo co-founder and CEO Tim Latimer told Axios this spring that a potential IPO is likely in 2026 or 2027. Ahead of an IPO, the startup is aiming for a $2 billion to $4 billion valuation, Axios reported.

    The first phase of Fervo’s marquee Cape Station geothermal energy plant in Utah is scheduled to go online next year, with the second phase set to open in 2028. Once it’s completed, the plant will be capable of generating 500 megawatts of power. This summer, the startup said it secured $205.6 million in capital to finance construction of the plant.

    Rice University team develops eco-friendly method to destroy 'forever chemicals' in water

    clean water research

    Rice University researchers have teamed up with South Korean scientists to develop the first eco-friendly technology that captures and destroys toxic “forever chemicals,” or PFAS, in water.

    PFAS have been linked to immune system disruption, certain cancers, liver damage and reproductive disorders. They can be found in water, soil and air, as well as in products like Teflon pans, waterproof clothing and food packaging. They do not degrade easily and are difficult to remove.

    Thus far, PFAS cleanup methods have relied on adsorption, in which molecules cling to materials like activated carbon or ion-exchange resins. But these methods tend to have limited capacity, low efficiency, slow performance and can create additional waste.

    The Rice-led study, published in the journal Advanced Materials, centered on a layered double hydroxide (LDH) material made from copper and aluminum that could rapidly capture PFAS and be used to destroy the chemicals.

    The study was led by Rice professor Youngkun Chung, a postdoctoral fellow under the mentorship of Michael S. Wong. It was conducted in collaboration with Seoktae Kang, professor at the Korea Advanced Institute of Science and Technology, and Keon-Ham Kim, professor at Pukyung National University, who first discovered the LDH material.

    The team evaluated the LDH material in river water, tap water and wastewater. And, according to Rice, that material’s unique copper-aluminum layers and charge imbalances created an ideal binding environment to capture PFAS molecules.

    “To my astonishment, this LDH compound captured PFAS more than 1,000 times better than other materials,” Chung, lead author of the study and now a fellow at Rice’s WaTER (Water Technologies, Entrepreneurship and Research) Institute and Sustainability Institute, said in a news release. “It also worked incredibly fast, removing large amounts of PFAS within minutes, about 100 times faster than commercial carbon filters.”

    Next, Chung, along with Rice professors Pedro Alvarez and James Tour, worked to develop an eco-friendly, sustainable method of thermally decomposing the PFAS captured on the LDH material. They heated saturated material with calcium carbonate, which eliminated more than half of the trapped PFAS without releasing toxic by-products.

    The team believes the study’s results could potentially have large-scale applications in industrial cleanups and municipal water treatments.

    “We are excited by the potential of this one-of-a-kind LDH-based technology to transform how PFAS-contaminated water sources are treated in the near future,” Wong added in the news release. “It’s the result of an extraordinary international collaboration and the creativity of young researchers.”

    ---

    This article originally appeared on our sister site, InnovationMap.