Eight startups were given awards at Energy Tech Nexus' Pilotathon. Photo via Getty Images.

Energy Tech Nexus held its Pilotathon and Showcase during the second annual Houston Energy & Climate Startup Week last month and granted awards to eight startups.

This year's event, focused on the theme "Energy Access and Resilience," offered 24 startups an opportunity to pitch their pilot projects.

"At Energy Tech Nexus, we recognize that scaling breakthrough energy technologies requires more than just capital—it demands strategic pilot partnerships," Nada Ahmed, founding Partner of Energy Tech Nexus, said in a release. "The Pilotathon serves as that critical bridge, creating a dynamic platform where established industry leaders and emerging startups collaborate to accelerate the deployment of solutions that will define our energy future."

Companies selected to participate in the Pilotathon and others from Energy Tech Nexus' COPILOT accelerator pitched at the event.

The Pilotathon winners included:

  • Best Overall Pilot Pitch: New Jersey-based Metal Light Inc., which is building a circular, solid metal fuel that will serve as a replacement for diesel fuel
  • Best Commercial Readiness Award: Oregon-based Espiku Inc. and Calgary-based Serenity Power. Espiku designs and develops water treatment and mineral extraction technologies that rely on low-pressure evaporative cycles. Serenity Power has developed a cutting-edge solid oxide fuel cell (SOFC) technology.
  • Corporate Partners Choice Award: California-based Rushnu, which has developed its modular CarbonCatalyze™ units that generate carbon-negative feedstock and is producing valuable chemicals from CO2 and salt at wastewater treatment sites.
  • People’s Choice Award for Best Startup Showcase: Houston-based Resin8, an AI-powered marketplace for industrial assets and heavy equipment

The COPILOT winners included:

  • Best Overall Pilot Pitch: Wisconsin-based V-Glass, which has developed a next-generation, vacuum-insulated glass
  • Energy Resilience Champion Award: Phoenix-based EnKoat, which is creating advanced material solutions to decarbonize buildings
  • Energy Access Award: Dallas-based Janta Power, which is developing 3D solar towers
  • Most Impactful Pilot: Houston-based PolyQor, which converts plastic waste into high-performing construction materials
COPILOT partners with Browning the Green Space, a nonprofit that promotes diversity, equity and inclusion (DEI) in the clean energy and climatetech sectors. The Wells Fargo Innovation Incubator (IN²) at the National Renewable Energy Laboratory backs the COPILOT accelerator, where companies are tasked with developing pilot projects for their innovations. Read more about the inaugural cohort here.
The University of Houston is one of 23 institutions to be awarded DOE funding for fusion research. Photo courtesy UH.

UH lands $8M in federal funding for fusion energy research

fusion funding

The University of Houston will receive $8 million in federal funding from the U.S. Department of Energy for its work on fusion technology to help power data centers and medical work.

Venkat Selvamanickam, professor at UH’s Cullen College of Mechanical and Aerospace Engineering and director of the Advanced Manufacturing Institute, has been tasked to lead the research on superconducting magnets that he said will make compact fusion reactors possible.

“Beyond fusion, superconductors can transform how we deliver power to data centers, enable highly efficient motors and generators and improve electric power devices,” Selvamanickam said in a news release. “They also enable critical applications such as MRI and proton beam therapy for cancer treatment. I want society to experience the broad benefits this remarkable technology can provide.”

UH is one of 23 institutions selected to share part of $134 million from the DOE’s Fusion Energy Sciences division. The total funding is split across two initiatives: $128 million for the Fusion Innovation Research Engine (FIRE) and $6.1 million for the Innovation Network for Fusion Energy program, according to the university.

UH will partner with the FIRE Collaborative for the research, which looks to understand why superconducting magnets in fusion reactors break down and work on developing solutions to make them more resilient.

“The advantage of fusion is it’s clean and it does not require storage. Solar energy can’t be used at night, and wind energy depends on wind conditions,” Selvamanickam added in the release. “Our goal is to make fusion a truly viable energy source.”

The Houston projects involve the innovative reuse of oil rig platforms and wind turbines. Courtesy rendering

UH projects propose innovative reuse of wind turbines and more on Gulf Coast

Forward-thinking

Two University of Houston science projects have been selected as finalists for the Gulf Futures Challenge, which will award a total of $50 million to develop ideas that help benefit the Gulf Coast.

Sponsored by the National Academies of Science, Engineering and Medicine’s Gulf Coast Research Program and Lever for Change, the competition is designed to spark innovation around problems in the Gulf Coast, such as rising sea levels, pollution, energy security, and community resiliency. The two UH projects beat out 162 entries from organizations based in Alabama, Florida, Louisiana, Mississippi, and Texas.

“Being named a finalist for this highly competitive grant underscores the University of Houston’s role as a leading research institution committed to addressing the most pressing challenges facing our region,” said Claudia Neuhauser, vice president for research at UH.

“This opportunity affirms the strength of our faculty and researchers and highlights UH’s capacity to deliver innovative solutions that will ensure the long-term stability and resilience of the Gulf Coast.”

One project, spearheaded by the UH Repurposing Offshore Infrastructure for Continued Energy (ROICE) program, is studying ways to use decommissioned oil rig platforms in the Gulf of Mexico as both clean energy hydrogen power generators as well a marine habitats. There are currently thousands of such platforms in the Gulf.

The other project involves the innovative recycling of wind turbines into seawall and coastal habitats. Broken and abandoned wind turbine blades have traditionally been thought to be non-recyclable and end up taking up incredible space in landfills. Headed by a partnership between UH, Tulane University, the University of Texas Health Science Center at Houston, the city of Galveston and other organizations, this initiative could vastly reduce the waste associated with wind farm technology.

wind turbine recycled for Gulf Coast seawall.Wind turbines would be repurposed into seawalls and more. Courtesy rendering

"Coastal communities face escalating threats from climate change — land erosion, structural corrosion, property damage and negative health impacts,” said Gangbing Song, Moores Professor of Mechanical and Aerospace Engineering at UH and the lead investigator for both projects.

“Leveraging the durability and anti-corrosive properties of these of decommissioned wind turbine blades, we will build coastal structures, improve green spaces and advance the resilience and health of Gulf Coast communities through integrated research, education and outreach.”

The two projects have received a development grant of $300,000 as a prize for making it to the finals. When the winner are announced in early 2026, two of the projects will net $20 million each to bring their vision to life, with the rest earning a consolation prize of $875,000, in additional project support.

In the event that UH doesn't grab the grand prize, the school's scientific innovation will earn a guaranteed $1.75 million for the betterment of the Gulf Coast.

---

This article originally appeared on CultureMap.com.

Hobby Airport's new solar canopy is operating at 100% capacity. Photo courtesy Houston Airports.

Hobby debuts solar canopy as airport system reaches new sustainability milestone

solar solutions

Houston's William P. Hobby Airport is generating its own clean energy.

Houston Airports announced that Hobby's red garage is now home to a "solar canopy" that is producing energy at 100 percent capacity to power daily operations. The photovoltaic (PV) solar system generated more than 1.1 gigawatt-hours of electricity in testing, and is expected to produce up to 1 megawatt-hour now that it's operating at full power.

“This project is proof that sustainability can be practical, visible and directly tied to the passenger experience,” Jim Szczesniak, director of aviation for Houston Airports, said in a news release. “Passengers now park under a structure that shields their cars from the Texas sun while generating clean energy that keeps airport operations running efficiently, lowering overall peak demand electrical costs during the day and our carbon footprint. It’s a win for travelers, the city and the planet.”

The project was completed by Texas A&M Engineering Experiment Station (TEES) and CenterPoint Energy. It's part of Houston Airport's efforts to reduce carbon emissions by 40 percent over its 2019 baseline.

In a separate announcement, the airport system also shared that it recently reached Level 3 in the Airports Council International (ACI) Airport Carbon Accreditation program after reducing emissions by 19 percent in three years. This includes reductions at George Bush Intercontinental Airport (IAH), Hobby and Ellington Airport/Houston Spaceport.

The reductions have come from initiatives such as adding electric vehicles to airport fleets, upgrading airfield lighting with LED bulbs, adding smarter power systems to terminals, and improving IAH's central utility plant with more efficient equipment. Additionally, the expansion to Hobby's West Concourse and renovations at IAH Terminal B incorporate cleaner equipment and technology.

According to Houston Airports, from 2019 to 2023:

  • IAH reduced emissions by 17 percent
  • Hobby reduced emissions by 32 percent
  • Ellington Airport reduced emissions by 4 percent

"I see firsthand how vital it is to link infrastructure with sustainability,” Houston City Council Member Twila Carter, chair of the council’s Resilience Committee, said in the release. “Reducing carbon emissions at our airports isn’t just about cleaner travel — it’s about smarter planning, safer communities and building a Houston that can thrive for generations to come.”

20-plus companies will pitch at Energy Tech Nexus' Pilotathon during Houston Energy & Climate Startup Week. Photo via Getty Images.

Energy Tech Nexus announces international startups to pitch at Pilotathon

Ready, Set, Pitch

Energy Tech Nexus will host its Pilotathon and Showcase as part of Houston Energy & Climate Startup Week next Tuesday, Sept. 16, featuring insightful talks from industry leaders and pitches from an international group of companies in the clean energy space.

This year's event will center around the theme "Energy Access and Resilience." Attendees will hear pitches from nine Pilotathon pitch companies, as well as the 14 companies that were named to Energy Tech Nexus' COPILOT accelerator earlier this year.

COPILOT partners with Browning the Green Space, a nonprofit that promotes diversity, equity and inclusion (DEI) in the clean energy and climatetech sectors. The Wells Fargo Innovation Incubator (IN²) at the National Renewable Energy Laboratory backs the COPILOT accelerator, where companies are tasked with developing pilot projects for their innovations.

The nine Pilotathon pitch companies include:

  • Ontario-based AlumaPower, which has developed a breakthrough technology that converts the aluminum-air battery into a "galvanic generator," a long-duration energy source that runs on aluminum as a fuel
  • Calgary-based BioOilSolv, a chemical manufacturing company that has developed cutting-edge biomass-derived solvents
  • Atlanta-based Cultiv8 Fuels, which creates high-quality renewable fuel products derived from hemp
  • Newfoundland-based eDNAtec Inc., a leader in environmental genomics that analyzes biodiversity and ecological health
  • Oregon-based Espiku Inc., which designs and develops water treatment and mineral extraction technologies that rely on low-pressure evaporative cycles
  • New York-based Fast Metals Inc., which has developed a chemical process to extract valuable metals from complex toxic mine tailings that is capable of producing iron, aluminum, scandium, titanium and other rare earth elements using industrial waste and waste CO2 as inputs
  • New Jersey-based Metal Light Inc., which is building a circular, solid metal fuel that will serve as a replacement for diesel fuel
  • Glasgow-based Novosound, which designs and manufactures innovative ultrasound sensors using a thin-film technique to address the limitations of traditional ultrasound with applications in industrial, medical and wearable markets
  • Calgary-based Serenity Power, which has developed a cutting-edge solid oxide fuel cell (SOFC) technology

The COPILOT accelerator companies include:

  • Accelerate Wind
  • Aquora Biosystems Inc.
  • EarthEn
  • Electromaim
  • EnKoat
  • GeoFuels
  • Harber Coatings Inc.
  • Janta Power
  • NanoSieve
  • PolyQor Inc.
  • Popper Power
  • Siva Powers America
  • ThermoShade
  • V-Glass Inc.

Read more about them here.

The Pilotathon will also include a keynote from Taylor Chapman, investment manager at New Climate Ventures; Deanna Zhang, CEO at V1 Climate Solutions; and Jolene Gurevich, director of fellowship experience at Breakthrough Energy. The Texas Climate Tech Collective will present its latest study on the Houston climate tech and innovation ecosystem.

CEOs Moji Karimi of Cemvita, Laureen Meroueh of Hertha Metals and others will also participate in a panel on successful pilots. Investors from NetZero Ventures, Halliburton Labs, Chevron, Saudi Aramco, Prithvi VC and other organizations will also be on-site. Find registration information here.

Fervo Energy has tapped Baker Hughes to supply technology to five power plants at Cape Station, its flagship geothermal power generation project in Utah. Photo courtesy Fervo Energy.

Fervo Energy selects Baker Hughes to supply geothermal tech for power plants

geothermal deal

Houston-based geothermal energy startup Fervo Energy has tapped Houston-based energy technology company Baker Hughes to supply geothermal equipment for five Fervo power plants in Utah.

The equipment will be installed at Fervo’s Cape Station geothermal power project near Milford, Utah. The project’s five second-phase, 60-megawatt plants will generate about 400 megawatts of clean energy for the grid.

Financial terms of the deal weren’t disclosed.

“Baker Hughes’ expertise and technology are ideal complements to the ongoing progress at Cape Station, which has been under construction and successfully meeting project milestones for almost two years,” says Tim Latimer, co-founder and CEO of Fervo. “Fervo designed Cape Station to be a flagship development that's scalable, repeatable, and a proof point that geothermal is ready to become a major source of reliable, carbon-free power in the U.S.”

Cape Station is permitted to deliver about two gigawatts of geothermal power. The first phase of the project will supply 100 megawatts of power to the grid beginning in 2026. The second phase is scheduled to come online by 2028.

“Geothermal power is one of several renewable energy sources expanding globally and proving to be a vital contributor to advancing sustainable energy development,” Baker Hughes Chairman and CEO Lorenzo Simonelli says. “By working with a leader like Fervo Energy and leveraging our comprehensive portfolio of technology solutions, we are supporting the scaling of lower-carbon power solutions that are integral to meet growing global energy demand.”

Founded in 2017, Fervo is now a unicorn, meaning its valuation as a private company has surpassed $1 billion. In March, Axios reported Fervo is targeting a $2 billion to $4 billion valuation in an IPO.

Over the course of eight years, Fervo has raised almost $1 billion in capital, including equity and debt financing. This summer, the company secured a $205.5 million round of capital.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Reliant partners to expand Texas virtual power plant and home battery use

energy incentives

Houston’s Reliant and San Francisco tech company GoodLeap are teaming up to bolster residential battery participation and accelerate the growth of NRG’s virtual power plant (VPP) network in Texas.

Through the new partnership, eligible Reliant customers can either lease a battery or enter into a power purchase agreement with GoodLeap through its GoodGrid program, which incentivises users by offering monthly performance-based rewards for contributing stored power to the grid. Through the Reliant GoodLeap VPP Battery Program, customers will start earning $40 per month in rewards from GoodLeap.

“These incentives highlight our commitment to making homeowner battery adoption more accessible, effectively offsetting the cost of the battery and making the upgrade a no-cost addition to their homes,” Dan Lotano, COO at GoodLeap, said in a news release.“We’re proud to work with NRG to unlock the next frontier in distributed energy in Texas. This marks an important step in GoodLeap reaching our nationwide goal of 1.5 GW of managed distributed energy over the next five years.”

Other features of the program include power outage plans, with battery reserves set aside for outage events. The plan also intelligently manages the battery without homeowner interaction.

The partnership comes as Reliant’s parent company, NRG, continues to scale its VPP program. Last year, NRG partnered with California-based Renew Home to distribute hundreds of thousands of VPP-enabled smart thermostats by 2035 in an effort to help households manage and lower their energy costs.

“We started building our VPP with smart thermostats across Texas, and now this partnership with GoodLeap brings home battery storage into our platform,” Mark Parsons, senior vice president and head of Texas energy at NRG, said in a the release. “Each time we add new devices, we’re enabling Texans to unlock new value from their homes, earn rewards and help build a more resilient grid for everyone. This is about giving customers the opportunity to actively participate in the energy transition and receive tangible benefits for themselves and their communities.

How Corrolytics is tackling industrial corrosion and cutting emissions

now streaming

Corrosion is not something most people think about, but for Houston's industrial backbone pipelines, refineries, chemical plants, and water infrastructure, it is a silent and costly threat. Replacing damaged steel and overusing chemicals adds hundreds of millions of tons of carbon emissions every year. Despite the scale of the problem, corrosion detection has barely changed in decades.

In a recent episode of the Energy Tech Startups Podcast, Anwar Sadek, founder and CEO of Corrolytics, explained why the traditional approach is not working and how his team is delivering real-time visibility into one of the most overlooked challenges in the energy transition.

From Lab Insight to Industrial Breakthrough

Anwar began as a researcher studying how metals degrade and how microbes accelerate corrosion. He quickly noticed a major gap. Companies could detect the presence of microorganisms, but they could not tell whether those microbes were actually causing corrosion or how quickly the damage was happening. Most tests required shipping samples to a lab and waiting months for results, long after conditions inside the asset had changed.

That gap inspired Corrolytics' breakthrough. The company developed a portable, real-time electrochemical test that measures microbial corrosion activity directly from fluid samples. No invasive probes. No complex lab work. Just the immediate data operators can act on.

“It is like switching from film to digital photography,” Anwar says. “What used to take months now takes a couple of hours.”

Why Corrosion Matters in Houston's Energy Transition

Houston's energy transition is a blend of innovation and practicality. While the world builds new low-carbon systems, the region still depends on existing industrial infrastructure. Keeping those assets safe, efficient, and emission-conscious is essential.

This is where Corrolytics fits in. Every leak prevented, every pipeline protected, and every unnecessary gallon of biocide avoided reduces emissions and improves operational safety. The company is already seeing interest across oil and gas, petrochemicals, water and wastewater treatment, HVAC, industrial cooling, and biofuels. If fluids move through metal, microbial corrosion can occur, and Corrolytics can detect it.

Because microbes evolve quickly, slow testing methods simply cannot keep up. “By the time a company gets lab results, the environment has changed completely,” Anwar explains. “You cannot manage what you cannot measure.”

A Scientist Steps Into the CEO Role

Anwar did not plan to become a CEO. But through the National Science Foundation's ICorps program, he interviewed more than 300 industry stakeholders. Over 95 percent cited microbial corrosion as a major issue with no effective tool to address it. That validation pushed him to transform his research into a product.

Since then, Corrolytics has moved from prototype to real-world pilots in Brazil and Houston, with early partners already using the technology and some preparing to invest. Along the way, Anwar learned to lead teams, speak the language of industry, and guide the company through challenges. “When things go wrong, and they do, it is the CEO's job to steady the team,” he says.

Why Houston

Relocating to Houston accelerated everything. Customers, partners, advisors, and manufacturing talent are all here. For industrial and energy tech startups, Houston offers an ecosystem built for scale.

What's Next

Corrolytics is preparing for broader pilots, commercial partnerships, and team growth as it continues its fundraising efforts. For anyone focused on asset integrity, emissions reduction, or industrial innovation, this is a company to watch.

Listen to the full conversation with Anwar Sadek on the Energy Tech Startups Podcast to learn more:

---

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.


Investors close partial acquisition of Phillips 66 subsidiary with growing EV network

M&A activity

Energy Equation Partners, a London-based investment firm focused on clean energy companies, and New York-based Stonepeak have completed the acquisition of a 65 percent interest in JET Tankstellen Deutschland GmbH, a subsidiary of Houston oil and gas giant Phillips 66.

JET is one of the largest and most popular fuel retailers in Germany and Austria with a rapidly growing EV charging network, according to a news release. It also operates approximately 970 service stations, convenience stores and car washes.

“We are delighted to complete this acquisition and to partner with Stonepeak and Phillips 66 to take JET to the next level,” Javed Ahmed, managing partner of Energy Equation Partners, said in a news release. “This investment reflects EEP’s commitment to investing in established players in the energy sector who have the potential to make a meaningful impact on the energy transition, and we are excited to work alongside the entire JET team, including its dedicated service station operators, to realize this vision.”

The deal values JET at approximately $2.8 billion. Phillips 66 will retain a 35 percent non-operated interest in JET and received about $1.6 billion in pre-tax proceeds.

“Under Phillips 66’s ownership, JET has grown into one of the largest fuel retailers in Germany and Austria," Anthony Borreca, senior managing director and co-head of energy at Stonepeak, added in a news release. "We are excited to join forces with them, as well as Javed and the EEP team, who have long-standing experience investing in and operating retail fuel distribution and logistics globally, to support the next phase of JET’s growth.”