Sage Geosystems will onboard its technology at the Naval Air Station in Corpus Christi. Photo via Naval Air Station Corpus Christi/Facebook

Expanding on its partnership with the United States Department of Defense's Defense Innovation Unit, Sage Geosystems has been selected to conduct geothermal project development initiatives at Naval Air Station in Corpus Christi.

Along with the Environmental Security Technology Certification Program, Sage will provide its proprietary Geopressured Geothermal Systems technology, will be able to evaluate the potential for geothermal baseload power generation to provide clean and consistent energy at the Naval Air Station base.

“We’re pleased to expand our partnership with the DOD at NAS Corpus Christi to demonstrate the advantages of geothermal technology for military energy independence,” Cindy Taff, CEO of Sage Geosystems, says in a news release.

Sage is also conducting initiatives at Fort Bliss and has completed an analysis at the Ellington Field Joint Reserve Base. The analyses could “pave the way for expanding geothermal energy solutions across additional U.S. military installations,” according to Sage.

The company’s proprietary technology works by leveraging hot dry rock, which is a more abundant geothermal resource compared to traditional hydrothermal formations, and it provides energy resilience for infrastructures. In addition, Sage is building a 3 megawatt commercial EarthStore geothermal energy storage facility in Christine, Texas, which is expected to be completed by December. Sage also announced a partnership with Meta Platforms. With Meta Platforms, Sage will deliver up to 150 megawatt of geothermal power generation east of the Rocky Mountains.

The Naval Air Station Corpus Christi is considered a critical training and operations hub for the U.S. Navy, and the partnership with Sage shows the Navy's commitment to achieving net-zero carbon emissions by 2045. Sage’s technology will be assessed for its ability to create a microgrid, which can reduce reliance on the utility grid and ensure power supply during outages.

“As we advance our Geopressured Geothermal Systems, we see tremendous potential to not only provide carbon-free power, but also strengthen the operational capabilities of U.S. military installations in an increasingly digital and electric world,” Taff adds.

In September, the Air Force awarded Sage a grant of $1.9 million in a first-of-its kind contract to determine whether a power plant using Geopressured Geothermal Systems is able to generate clean energy needed for a base to achieve energy resilience.

Houston startup Sage Geosystems has announced a new $1.9 million deal with the Air Force. Photo via sagegeosystems.com

US Air Force awards Houston geothermal co. $1.9M grant project

big deal

The Department of the Air Force awarded Houston geothermal company Sage Geosystems Inc. a grant of $1.9 million in a first-of-its kind contract to determine whether a power plant using Geopressured Geothermal Systems is able to generate clean energy “needed for a base to achieve energy resilience,” according to a news release. The Sage facility will be the first GGS facility in the world to generate electricity, and the system will be constructed at an off-site test well in Starr County, Texas.

”We are excited to partner with the U.S. Air Force on this geothermal demonstration project,” CEO of Sage Geosystems Cindy Taff says in a news release. “Next generation geothermal technologies, like Sage Geosystems’ GGS, will be critical in providing energy resiliency at U.S. military installations.”

In addition to the grant, the company will match the grant with an additional $1.9 million for the demonstration project. The collaboration with Sage is one of three geothermal pilot projects the DAF has initiated in regards to next-generation geothermal technologies in 2024.

“We feel this is the launch pad of helping not only the DoD but many other applications throughout global markets,” 147th Civil Engineer Squadron Commander Lt Col Christian Campbell says in the release.

According to the DAF, the possibility of a full-scale project at Ellington Field Joint Air Reserve Base in Houston could usher in a new era of clean power producing plants to help meet the requirements for bases.

“This initial contract is a step forward in the Air Force’s push for energy resilience,” Kirk Phillips, director of the Air Force Office of Energy Assurance, adds in the release. “This project will improve Ellington Field’s ability to maintain operations during electrical grid outages and be completely self-sufficient for their energy needs.”

The GGS process works by repurposing fracking technology to extract thermal energy from below the Earth’s surface.GGS also demonstrates the opportunity for the civilian sector by surpassing the intermittency challenges for solar and wind energy generation. GSS can also work towards minimizing land use, which enables the technology to be used in urban areas without relying on transmission line build outs that can be expensive.

“This project, and the future Department of the Air Force projects that it paves the way for, will help to assure that our national security needs are met by our installations during critical emergencies,” Phillips continues.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston companies scoop up $31 million in funds from DOE, EPA methane emissions program

fresh funds

The U.S. Department of Energy and the U.S. Environmental Protection Agency announced the selection of seven projects from Houston companies to receive funding through the Methane Emissions Reduction Program.

The projects are among 43 others nationwide, including 12 from Texas, that reduce, monitor, measure, and quantify methane emissions from the oil and gas sector. The DOE and EPA awarded $850 million in total through the program.

The Houston companies picked up $31.7 million in federal funding through the program in addition to more than $9.5 million in non-federal dollars.

“I’m excited about the opportunities these will create internally but even more so the creation of jobs and training opportunities for the communities in which we work,” Scott McCurdy, Encino Environmental Services CEO, said in a news release. His company received awards for two projects.

“These projects will allow us to further support and strengthen the U.S. Energy industry’s ability to deliver clean, reliable, and affordable energy globally,” he added.

The Houston-area awards included:

DaphneTech USA LLC

Total funding: $5.8 million (approximately $4.5 million in federal, $1.3 million in non-federal)

The award was granted for the company’s Daphne and Williams Methane Slip Abatement Plasma-Catalyst Scale-Up project. Daphne will study how its SlipPure technology, a novel exhaust gas cleaning system that abates methane and exhaust gas pollution from natural gas-fueled engines, can be economically viable across multiple engine types and operating conditions.

Baker Hughes Energy Transition LLC 

Total funding: $7.47 million (approximately $6 million in federal, $1.5 million in non-federal)

The award was granted for the company’s Advancing Low Cost CH4 Emissions Reduction from Flares through Large Scale Deployment of Retrofittable and Adaptive Technology project. The project aims to develop a scalable, integrated methane emissions reduction system for flares based on optical gas imaging and estimation algorithms.

Encino Environmental Services

Total funding: $15.17 million (approximately $11 million in federal, $4.17 million in non-federal)

The award was granted for two projects. The Advanced Methane Reduction System: Integrating Infrared and Visual Imaging to Assess Net Heating Value at the Combustion Zone and Determine Combustion Efficiency to Enhance Flaring Performance project aims to develop and deploy an advanced continuous emissions monitoring system. It’s Advancing Methane Emissions Reduction through Innovative Technology project will develop and deploy a technology using sensors and composite materials to address emissions originating in storage tanks.

Envana Software Solutions

Total funding: $5.26 million (approximately $4.2 million in federal, $1 million in non-federal)

The award was granted for the company’s Leak Detection and Reduction Software to Identify Methane Emissions and Trigger Mitigation at Oil and Gas Production Facilities Based on SCADA Data project. It aims to improve its Recon software for monitoring methane emissions and develop partnerships with local universities and organizations.

Capwell Services Inc.

Total funding: $4.19 million (approximately $3.3 million in federal, $837,000 in non-federal)

The award was granted for its Methane Emissions Abatement Technology for Low-Flow and Intermittent Emission Sources project. It aims to to deploy and field-test a methane abatement unit and improve air quality and health outcomes for communities near production facilities and establish field technician internships for local residents.

Blue Sky Measurements 

Total funding: $3.41 million (approximately $2.7 million in federal, $683,000 in non-federal)

The award was granted for its Field Validation of Novel Fixed Position Optical Sensor for Fugitive Methane Emission Detection Quantification and Location with Real-Time Notification for Rapid Mitigation project. It aims to field test an optical sensing technology at six well sites in the Permian Basin.

Southern Methodist University, The University of Texas at Austin, Texas A&M Engineering Experiment Station and Hyliion Inc. were other Texas-based organizations to earn awards. See the full list of projects here.

Texas university's 'WaterHub' will dramatically reduce water usage by 40%

Sustainable Move

A major advancement in sustainability is coming to one Texas university. A new UT WaterHub at the University of Texas at Austin will be the largest facility of its kind in the U.S. and will transform how the university manages its water resources.

It's designed to work with natural processes instead of against them for water savings of an estimated 40 percent. It's slated for completion in late 2027.

The university has had an active water recovery program since the 1980s. Still, water is becoming an increasing concern in Austin. According to Texas Living Waters, a coalition of conservation groups, Texas loses enough water annually to fill Lady Bird Lake roughly 89 times over.

As Austin continues to expand and face water shortages, the region's water supply faces increased pressure. The UT WaterHub plans to address this challenge by recycling water for campus energy operations, helping preserve water resources for both the university and local communities.

The 9,600-square-foot water treatment facility will use an innovative filtration approach. To reduce reliance on expensive machinery and chemicals, the system uses plants to naturally filter water and gravity to pull it in the direction it needs to go. Used water will be gathered from a new collection point near the Darrell K Royal Texas Memorial Stadium and transported to the WaterHub, located in the heart of the engineering district. The facility's design includes a greenhouse viewable to the public, serving as an interactive learning space.

Beyond water conservation, the facility is designed to protect the university against extreme weather events like winter storms. This new initiative will create a reliable backup water supply while decreasing university water usage, and will even reduce wastewater sent to the city by up to 70 percent.

H2O Innovation, UT’s collaborator in this project, specializes in water solutions, helping organizations manage their water efficiently.

"By combining cutting-edge technology with our innovative financing approach, we’re making it easier for organizations to adopt sustainable water practices that benefit both their bottom line and the environment, paving a step forward in water positivity,” said H2O Innovation president and CEO Frédéric Dugré in a press release.

The university expects significant cost savings with this project, since it won't have to spend as much on buying water from the city or paying fees to dispose of used water. Over the next several years, this could add up to millions of dollars.

---

A version of this story originally appeared on our sister site, CultureMap Austin.

Report: Texas solar power, battery storage helped stabilize grid in summer 2024, but challenges remain

by the numbers

Research from the Federal Reserve Bank of Dallas shows that solar power and battery storage capacity helped stabilize Texas’ electric grid last summer.

Between June 1 and Aug. 31, solar power met nearly 25 percent of midday electricity demand within the Electric Reliability Council of Texas (ERCOT) power grid. Rising solar and battery output in ERCOT assisted Texans during a summer of triple-digit heat and record load demands, but the report fears that the state’s power load will be “pushed to its limits” soon.

The report examined how the grid performed during more demanding hours. At peak times, between 11 a.m. and 2 p.m. in the summer of 2024, solar output averaged nearly 17,000 megawatts compared with 12,000 megawatts during those hours in the previous year. Between 6 p.m. and 9 p.m., discharge from battery facilities averaged 714 megawatts in 2024 after averaging 238 megawatts for those hours in 2023. Solar and battery output have continued to grow since then, according to the report.

“Batteries made a meaningful contribution to what those shoulder periods look like and how much scarcity we get into during these peak events,” ERCOT CEO Pablo Vegas said at a board of directors conference call.

Increases in capacity from solar and battery-storage power in 2024 also eclipsed those of 2023. In 2023 ECOT added 4,570 megawatts of solar, compared to adding nearly 9,700 megawatts in 2024. Growth in battery storage capacity also increased from about 1,500 megawatts added in 2023 to more than 4,000 megawatts added in 2024. Natural gas capacity also saw increases while wind capacity dropped by about 50 percent.

Texas’ installation of utility-scale solar surpassed California’s in the spring of last year, and jumped from 1,900 megawatts in 2019 to over 20,000 megawatts in 2024 with solar meeting about 50 percent of Texas' peak power demand during some days.

While the numbers are encouraging, the report states that there could be future challenges, as more generating capacity will be required due to data center construction and broader electrification trends. The development of generating more capacity will rely on multiple factors like price signals and market conditions that invite more baseload and dispatchable generating capacity, which includes longer-duration batteries, and investment in power purchase agreements and other power arrangements by large-scale consumers, according to the report.

Additionally, peak demand during winter freezes presents challenges not seen in the summer. For example, in colder months, peak electricity demand often occurs in the early morning before solar energy is available, and it predicts that current battery storage may be insufficient to meet the demand. The analysis indicated a 50% chance of rolling outages during a cold snap similar to December 2022 and an 80% chance if conditions mirror the February 2021 deep freeze at the grid’s current state.

The report also claimed that ERCOT’s energy-only market design and new incentive structures, such as the Texas Energy Fund, do not appear to be enough to meet the predicted future magnitude and speed of load growth.

Read the full report here.