the view from heti

Houston geothermal exec shares why she sees the potential of geothermal power

Sarah Jewett, vice president of strategy at Fervo Energy, shares how Fervo has been able to leverage proven oil and gas technologies, such as horizontal drilling, and more, to pave the way toward a low-carbon energy future. Photo via HETI

Houston-based Fervo Energy, the leader in enhanced geothermal technology, is accelerating decarbonization by bringing 24/7 carbon-free electricity to the grid.

Fervo’s mission is to leverage geoscience innovations to accelerate the world’s transition to sustainable energy. Fervo continues to demonstrate the commercial viability and scalability of enhanced geothermal energy, which uses breakthrough techniques to harness heat from the earth and generate continuous electricity.

Sarah Jewett, VP of Strategy at Fervo, shared more about how Fervo has been able to leverage proven oil and gas technologies, such as horizontal drilling, well stimulation, and fiber-optic sensing, to pave the way toward a low-carbon energy future.

Q: Can you share your background and tell us a little about your career prior to joining Fervo Energy?

I’m a mechanical engineer by training. My career started in oil field services after working internships in hydropower and wind power. Transition technologies, such as enhanced geothermal systems, require a wide range of technical and operational innovations. When I joined Fervo Energy, I knew I was with the right team to accomplish the massive mission of addressing climate change.

Q: What are some of the challenges Fervo encounters as a carbon-free energy company?

There are a lot of misperceptions around the geothermal industry. Traditional geothermal wells require highly specific subsurface conditions—the right heat, fluid saturation, and permeability. Because of this, it has been challenging to scale geothermal energy.

Our enhanced geothermal technology is a game changer, but our technical demonstrations are capital intensive. So, one of our biggest ongoing challenges is to execute our projects flawlessly, building a new reputation centered around scalability and affordability.

In addition, when we started, we faced a somewhat uncertain market. Today, as companies look for innovative ways to decarbonize operations, geothermal has become one of the hottest renewables on the market.

Q: You’re now in your seventh year as a company. What are some of the major milestones that have contributed to the success of the business?

Fervo recently completed the 30-day well test on Project Red, a first-of-its-kind geothermal pilot project, located in northern Nevada. We confirmed record production of 24/7 carbon-free enhanced geothermal energy, which established Project Red as the most productive enhanced geothermal system in history.

This success validated the commercial viability of Fervo’s geothermal well construction and monitoring technologies, which leverage drilling and production innovations from modern oil and gas development. Since then, we’ve broken ground on our Cape Station project, a near-field development in southwest Utah that is set to deliver 400 MW of power by 2028.

Q: Tell us about your vision for the future. What is Fervo Energy focused on in 2024?

We’re ushering in a new era of geothermal energy. Our approach to enhanced geothermal energy is no longer a theoretical concept—it’s a proven solution for meeting the world’s growing demand for sustainable energy. We’re building modular power facilities and we’re able to scale them quickly. In 2024, we’re focused on finding the capital we need to achieve the scale we want. That will be key to unlocking much more growth.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Learn more about Fervo Energy and its pioneering approach to next-generation geothermal energy.

Trending News

A View From HETI

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

Trending News