the view from heti

Houston geothermal exec shares why she sees the potential of geothermal power

Sarah Jewett, vice president of strategy at Fervo Energy, shares how Fervo has been able to leverage proven oil and gas technologies, such as horizontal drilling, and more, to pave the way toward a low-carbon energy future. Photo via HETI

Houston-based Fervo Energy, the leader in enhanced geothermal technology, is accelerating decarbonization by bringing 24/7 carbon-free electricity to the grid.

Fervo’s mission is to leverage geoscience innovations to accelerate the world’s transition to sustainable energy. Fervo continues to demonstrate the commercial viability and scalability of enhanced geothermal energy, which uses breakthrough techniques to harness heat from the earth and generate continuous electricity.

Sarah Jewett, VP of Strategy at Fervo, shared more about how Fervo has been able to leverage proven oil and gas technologies, such as horizontal drilling, well stimulation, and fiber-optic sensing, to pave the way toward a low-carbon energy future.

Q: Can you share your background and tell us a little about your career prior to joining Fervo Energy?

I’m a mechanical engineer by training. My career started in oil field services after working internships in hydropower and wind power. Transition technologies, such as enhanced geothermal systems, require a wide range of technical and operational innovations. When I joined Fervo Energy, I knew I was with the right team to accomplish the massive mission of addressing climate change.

Q: What are some of the challenges Fervo encounters as a carbon-free energy company?

There are a lot of misperceptions around the geothermal industry. Traditional geothermal wells require highly specific subsurface conditions—the right heat, fluid saturation, and permeability. Because of this, it has been challenging to scale geothermal energy.

Our enhanced geothermal technology is a game changer, but our technical demonstrations are capital intensive. So, one of our biggest ongoing challenges is to execute our projects flawlessly, building a new reputation centered around scalability and affordability.

In addition, when we started, we faced a somewhat uncertain market. Today, as companies look for innovative ways to decarbonize operations, geothermal has become one of the hottest renewables on the market.

Q: You’re now in your seventh year as a company. What are some of the major milestones that have contributed to the success of the business?

Fervo recently completed the 30-day well test on Project Red, a first-of-its-kind geothermal pilot project, located in northern Nevada. We confirmed record production of 24/7 carbon-free enhanced geothermal energy, which established Project Red as the most productive enhanced geothermal system in history.

This success validated the commercial viability of Fervo’s geothermal well construction and monitoring technologies, which leverage drilling and production innovations from modern oil and gas development. Since then, we’ve broken ground on our Cape Station project, a near-field development in southwest Utah that is set to deliver 400 MW of power by 2028.

Q: Tell us about your vision for the future. What is Fervo Energy focused on in 2024?

We’re ushering in a new era of geothermal energy. Our approach to enhanced geothermal energy is no longer a theoretical concept—it’s a proven solution for meeting the world’s growing demand for sustainable energy. We’re building modular power facilities and we’re able to scale them quickly. In 2024, we’re focused on finding the capital we need to achieve the scale we want. That will be key to unlocking much more growth.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Learn more about Fervo Energy and its pioneering approach to next-generation geothermal energy.

Trending News

A View From HETI

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

Trending News