the view from heti

Houston geothermal exec shares why she sees the potential of geothermal power

Sarah Jewett, vice president of strategy at Fervo Energy, shares how Fervo has been able to leverage proven oil and gas technologies, such as horizontal drilling, and more, to pave the way toward a low-carbon energy future. Photo via HETI

Houston-based Fervo Energy, the leader in enhanced geothermal technology, is accelerating decarbonization by bringing 24/7 carbon-free electricity to the grid.

Fervo’s mission is to leverage geoscience innovations to accelerate the world’s transition to sustainable energy. Fervo continues to demonstrate the commercial viability and scalability of enhanced geothermal energy, which uses breakthrough techniques to harness heat from the earth and generate continuous electricity.

Sarah Jewett, VP of Strategy at Fervo, shared more about how Fervo has been able to leverage proven oil and gas technologies, such as horizontal drilling, well stimulation, and fiber-optic sensing, to pave the way toward a low-carbon energy future.

Q: Can you share your background and tell us a little about your career prior to joining Fervo Energy?

I’m a mechanical engineer by training. My career started in oil field services after working internships in hydropower and wind power. Transition technologies, such as enhanced geothermal systems, require a wide range of technical and operational innovations. When I joined Fervo Energy, I knew I was with the right team to accomplish the massive mission of addressing climate change.

Q: What are some of the challenges Fervo encounters as a carbon-free energy company?

There are a lot of misperceptions around the geothermal industry. Traditional geothermal wells require highly specific subsurface conditions—the right heat, fluid saturation, and permeability. Because of this, it has been challenging to scale geothermal energy.

Our enhanced geothermal technology is a game changer, but our technical demonstrations are capital intensive. So, one of our biggest ongoing challenges is to execute our projects flawlessly, building a new reputation centered around scalability and affordability.

In addition, when we started, we faced a somewhat uncertain market. Today, as companies look for innovative ways to decarbonize operations, geothermal has become one of the hottest renewables on the market.

Q: You’re now in your seventh year as a company. What are some of the major milestones that have contributed to the success of the business?

Fervo recently completed the 30-day well test on Project Red, a first-of-its-kind geothermal pilot project, located in northern Nevada. We confirmed record production of 24/7 carbon-free enhanced geothermal energy, which established Project Red as the most productive enhanced geothermal system in history.

This success validated the commercial viability of Fervo’s geothermal well construction and monitoring technologies, which leverage drilling and production innovations from modern oil and gas development. Since then, we’ve broken ground on our Cape Station project, a near-field development in southwest Utah that is set to deliver 400 MW of power by 2028.

Q: Tell us about your vision for the future. What is Fervo Energy focused on in 2024?

We’re ushering in a new era of geothermal energy. Our approach to enhanced geothermal energy is no longer a theoretical concept—it’s a proven solution for meeting the world’s growing demand for sustainable energy. We’re building modular power facilities and we’re able to scale them quickly. In 2024, we’re focused on finding the capital we need to achieve the scale we want. That will be key to unlocking much more growth.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Learn more about Fervo Energy and its pioneering approach to next-generation geothermal energy.

Trending News

A View From HETI

Greenhouse gases continue to rise, and the challenges they pose are not going away. Photo via Getty Images

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

Trending News