dac funding

DOE deploys more than $10M into Houston-related carbon capture projects

Four direct air capture projects with ties to Houston just received federal funding. Photo via Getty Images

Four carbon capture projects with ties to the Houston area have collectively received more than $10 million in funding from the U.S. Department of Energy.

What follows is a funding rundown for the four direct air capture (DAC) projects. DAC pulls carbon dioxide emissions from the atmosphere at any location, while carbon capture generally is done where the emissions happen.

This funding announcement comes on the heels of a subsidiary of Houston-based Occidental receiving about $600 million from the Department of Energy (DOE) for establishment of a DAC hub in South Texas.

Western Regional Direct Air Hub

Houston-based Chevron New Energies, the low-carbon subsidiary of energy giant Chevron USA, is collecting nearly $5 million in funding — $3 million of it from the DOE — for a potential DAC hub in the Bakersfield, California, area.

Chevron says it plans to install equipment at its cogeneration plant in Central California’s San Joaquin Valley so it can inject and permanently store carbon dioxide emissions underground. This is Chevron’s first carbon capture and storage project.

A cogeneration plant produces several forms of energy from a single fuel source.

Last year, Chevron was the lead investor in a $381 million series E funding round for Svante, a Canada-based producer of carbon capture technology.

“Several carbon capture technologies exist today, and they all have important roles to play in addressing the diverse requirements of hard-to-avoid emissions,” Claude Letourneau, president and CEO of Svante, said in a June 2023 announcement about the Central California DAC hub.

Pelican-Gulf Coast Carbon Removal project

Louisiana State University in Baton Rouge has attracted nearly $4.9 million in funding — including nearly $3 million from the DOE — for the proposed Pelican-Gulf Coast Carbon Removal project in the Pelican State. Partners in the Pelican project include the University of Houston and Shell, whose U.S. headquarters is in Houston.

The DAC project would remove CO2 in the atmosphere and permanently store it underground.

Red Rocks DAC Hub

Houston-based Fervo Energy is earmarking earmark its nearly $3.6 million in funding — including almost $2.9 million from the DOE — for development of the Red Rocks DAC Hub in southwest Utah.

Fervo believes more than 10 gigawatts of geothermal resources are available in southwest Utah that would translate into the potential storage of up to 100 million tons of CO2 each year.

“Scaling DAC technology will require abundant clean, firm power and heat to build truly carbon-negative projects,” Fervo says in a LinkedIn post. “As the leader in next-generation geothermal, Fervo is well positioned to support and accelerate the commercial deployment of DAC, while placing Utah at the heart of the energy transition.”

Houston Area DAC Hub

GE Research, the Niskayuna, New York-based R&D arm of General Electric, has scooped up more than $3.3 million in funding — including over $2.5 million from the DOE — to explore creating a DAC hub in the Houston area that would involve clean energy, such as renewable or nuclear power.

The project, being developed in conjunction with Omaha, Nebraska-based energy company Tenaska, would be designed to remove 1 million metric tons of CO2 from the air and permanently store it or use it in a value-add project (or both). Tenaska opened an office in Houston in 2019.

“We know that to truly bring an economical, commercial-scale solution in DAC to the market, it will require a collaborative effort with government, industry, and academic partners,” David Moore, leader of GE’s carbon capture team, said in March 2023. “If we do this right, we could have a commercially deployable DAC solution around the end of this decade.”

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News