A new study puts Texas at No. 2 among the states most at risk for power outages this summer. Photo via Getty Images

Texas plugs in among states at highest risk for summer power outages in 2025

by the numbers

Warning: Houston could be in for an especially uncomfortable summer.

A new study from solar energy company Wolf River Electric puts Texas at No. 2 among the states most at risk for power outages this summer. Michigan tops the list.

Wolf River Electric analyzed the number of large-scale outages that left more than 5,000 utility customers, including homes, stores and schools, without summertime electricity from 2019 to 2023. During that period, Texas experienced 7,164 summertime power outages.

Despite Michigan being hit with more summertime outages, Texas led the list of states with the most hours of summertime power outages — an annual average of 35,440. That works out to 1,477 days. “This means power cuts in Texas tend to last longer, making summer especially tough for residents and businesses,” the study says.

The Electric Reliability Council of Texas (ERCOT), which operates the electric grid serving 90 percent of the state, predicts its system will set a monthly record for peak demand this August — 85,759 megawatts. That would exceed the current record of 85,508 megawatts, dating back to August 2023.

In 2025, natural gas will account for 37.7 percent of ERCOT’s summertime power-generating capacity, followed by wind (22.9 percent) and solar (19 percent), according to an ERCOT fact sheet.

This year, ERCOT expects four months to surpass peak demand of 80,000 megawatts:

  • June 2025 — 82,243 megawatts
  • July 2025 — 84,103 megawatts
  • August 2025 — 85,759 megawatts
  • September 2025 — 80,773 megawatts

One megawatt is enough power to serve about 250 residential customers amid peak demand, according to ERCOT. Using that figure, the projected peak of 85,759 megawatts in August would supply enough power to serve more than 21.4 million residential customers in Texas.

Data centers, artificial intelligence and population growth are driving up power demand in Texas, straining the ERCOT grid. In January, ERCOT laid out a nearly $33 billion plan to boost power transmission capabilities in its service area.
A major heat alert is in place for Texas. Photo via Getty Images

Is the Texas power grid prepared for summer 2025 heat?

Guest Column

Although the first official day of summer is not until June 20, Houstonians are already feeling the heat with record-breaking, triple-digit temperatures. The recent heatwave has many Texans wondering if the state’s grid will have enough power to meet peak demand during the summer.

How the Texas grid fared in summer 2024

To predict what could happen as we enter summer this year, it is essential to assess the state of the grid during summer 2024, and what, if anything, has been improved.

According to research from the Federal Reserve Bank of Dallas, solar electricity generation and utility-scale batteries within the ERCOT power grid set records in summer 2024. On average, solar contributed nearly 25 percent of total power needs during mid-day hours between June 1 and August 31. In critical evening hours, when load (demand for electricity) remains elevated but solar output declines, discharge from batteries successfully filled the gap.

Texas added more battery storage capacity than any other state last year, and, excluding California, now has more battery capacity than the rest of the country combined. The state also added 3,410 megawatts of natural gas-fueled power last year. While we did experience major power losses as a result of extreme weather, such as the derecho in May and Hurricane Beryl in July, ERCOT did not have to issue a single conservation appeal last summer to ward off capacity-related outages--and it was the sixth-hottest summer on record.

Policymakers are also taking steps to pass legislation that will help stabilize the grid. During this year’s 89th legislative session, Senate Bill 6 (TX SB6) was introduced, which seeks to:

  • Improve ERCOT's load forecasting transparency
  • Enhance outage protections for residential consumers
  • Adjust transmission cost allocations
  • Bolster grid reliability

In essence, the bill is meant to balance business growth with grid reliability, ensuring that the state continues to be an attractive destination for industrial expansion while preventing reliability risks due to rapid demand increases.

Is the Texas grid prepared for summer 2025?

The good news is that the grid is predicted to be able to manage the energy demand this summer, but there is no guarantee that power disruptions will not happen.

The National Oceanic and Atmospheric Administration has indicated that summer 2025 will likely be warmer and drier than average across most of Texas. Based on ERCOT data and weather projections, West Texas and the Dallas-Fort Worth and Houston metropolitan areas face the highest risk of outages.

While Texas is No. 1 in wind power and No. 2 in solar power, only behind California, there are valid concerns about heavy reliance on renewables when the wind isn’t blowing or the sun isn’t shining, compounded by a lack of large-scale battery storage. Then, there’s the underlying cost and ecological footprint associated with the manufacturing of those batteries. Although solar and wind capacity continues to expand rapidly, integration challenges remain during peak demand periods, especially during the late afternoon when solar generation declines but air conditioning usage remains high.

Additional factors that contribute to the grid’s instability are that Texas faces a massive surge in demand for electricity due to an increase in large users like crypto mining facilities and data centers, as well as population growth. ERCOT predicts that Texas’ energy demand will nearly double by 2030, with power supply projected to fall short of peak demand in a worst-case scenario beginning in summer 2026.

Thanks to investments in solar power, battery storage, and traditional energy sources, ERCOT has made progress in improving grid reliability which indicates that, at least for this summer, energy load will be manageable. A combination of legislative action, strategic planning and technological innovation will need to continue to ensure that this momentum remains on a positive trajectory.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

Texans are facing extreme weather at every turn — can the grid withstand these events? Photo via heimdallpower.com

Can the Texas grid handle extreme weather conditions across regions?

Guest Column

From raging wildfires to dangerous dust storms and fierce tornadoes, Texans are facing extreme weather conditions at every turn across the state. Recently, thousands in the Texas Panhandle-South Plains lost power as strong winds ranging from 35 to 45 mph with gusts upwards of 65 mph blew through. Meanwhile, many North Texas communities are still reeling from tornadoes, thunderstorms, and damaging winds that occurred earlier this month.

A report from the National Oceanic and Atmospheric Administration found that Texas led the nation with the most billion-dollar weather and climate disasters in 2023, while a report from Texas A&M University researchers indicates Texas will experience twice as many 100-degree days, 30-50% more urban flooding and more intense droughts 15 years from now if present climate trends persist.

With the extreme weather conditions increasing in Texas and nationally, recovering from these disasters will only become harder and costlier. When it comes to examining the grid’s capacity to withstand these volatile changes, we’re past due. As of now, the grid likely isn’t resilient enough to make do, but there is hope.

Where does the grid stand now?

Investment from utility companies have resulted in significant improvements, but ongoing challenges remain, especially as extreme weather events become more frequent. While the immediate fixes have helped improve reliability for the time being, it won't be enough to withstand continuous extreme weather events. Grid resiliency will require ongoing efforts over one-time bandaid approaches.

What can be done?

Transmission and distribution infrastructure improvements must vary geographically because each region of Texas faces a different set of hazards. This makes a one-size-fits-all solution impossible. We’re already seeing planning and investment in various regions, but sweeping action needs to happen responsibly and quickly to protect our power needs.

After investigators determined that the 2024 Smokehouse Creek fire (the largest wildfire in Texas history) was caused by a decayed utility pole breaking, it raised the question of whether the Panhandle should invest more in wrapping poles with fire retardant material or covering wires so they are less likely to spark.

In response, Xcel Energy (the Panhandle’s version of CenterPoint) filed its initial System Resiliency Plan with the Public Utility Commission of Texas, with proposed investments to upgrade and strengthen the electric grid and ensure electricity for about 280,000 homes and businesses in Texas. Tailored to the needs of the Texas Panhandle and South Plains, the $539 million resiliency plan will upgrade equipment’s fire resistance to better stand up to extreme weather and wildfires.

Oncor, whose territories include Dallas-Fort Worth and Midland-Odessa, analyzed more than two decades of weather damage data and the impact on customers to identify the priorities and investments needed across its service area. In response, it proposed investing nearly $3 billion to harden poles, replace old cables, install underground wires, and expand the company's vegetation management program.

What about Houston?

While installing underground wires in a city like Dallas makes for a good investment in grid resiliency, this is not a practical option in the more flood-prone areas of Southeast Texas like Houston. Burying power lines is incredibly expensive, and extended exposure to water from flood surges can still cause damage. Flood surges are also likely to seriously damage substations and transformers. When those components fail, there’s no power to run through the lines, buried or otherwise.

As part of its resiliency plan for the Houston metro area, CenterPoint Energy plans to invest $5.75 billion to strengthen the power grid against extreme weather. It represents the largest single grid resiliency investment in CenterPoint’s history and is currently the most expensive resiliency plan filed by a Texas electric utility. The proposal calls for wooden transmission structures to be replaced with steel or concrete. It aims to replace or strengthen 5,000 wooden distribution poles per year until 2027.

While some of our neighboring regions focus on fire resistance, others must invest heavily in strengthening power lines and replacing wooden poles. These solutions aim to address the same critical and urgent goal: creating a resilient grid that is capable of withstanding the increasingly frequent and severe weather events that Texans are facing.

The immediate problem at hand? These solutions take time, meaning we’re likely to encounter further grid instability in the near future.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

While our grid may be showing its age, this is the perfect time to shift from reacting to problems to getting ahead of them.

Reshaping the Texas grid: The impact of EVs, AI, renewables, and extreme weather

guest column

Did you catch those images of idle generators that CenterPoint had on standby during Hurricane Beryl? With over 2 million people in the Houston area left in the dark, many were wondering, "if the generators are ready, why didn’t they get used?" It seems like power outages are becoming just as common as the severe storms themselves.

But as Ken Medlock, Senior Director of the Baker Institute Center for Energy Studies (CES) explains, it's not a simple fix. The outages during Hurricane Beryl were different from what we saw during Winter Storm Uri. This time, with so many poles and wires down, those generators couldn’t be put to use. It’s a reminder that each storm brings its own set of challenges, and there’s no one-size-fits-all solution when it comes to keeping the lights on. While extreme weather is one of the leading threats to our electric grid, it's certainly not the only one adding strain on our power infrastructure.

The rapid rise of artificial intelligence (AI) and electric vehicles (EVs) is transforming the way we live, work, and move. Beneath the surface of these technological marvels lies a challenge that could define the future of our energy infrastructure: they all depend on our electrical grid. As AI-powered data centers and a growing fleet of EVs demand more power than ever before, our grid—already under pressure from extreme weather events and an increasing reliance on renewable energy—faces a critical test. The question goes beyond whether our grid can keep up, but rather focuses on how we can ensure it evolves to support the innovations of tomorrow without compromising reliability today. The intersection of these emerging technologies with our aging energy infrastructure poses a dilemma that policymakers, industry leaders, and consumers must address.

Julie Cohn, Nonresident Fellow at the Center for Energy Studies at the Baker Institute for Public Policy, presents several key findings and recommendations to address concerns about the reliability of the Texas energy grid in her Energy Insight. She suggests there’s at least six developments unfolding that will affect the reliability of the Texas Interconnected System, operated by the Electric Reliability Council of Texas (ERCOT) and the regional distribution networks operated by regulated utilities.

Let’s dig deeper into some of these issues:

AI

AI requires substantial computational power, particularly in data centers that house servers processing vast amounts of data. These data centers consume large amounts of electricity, putting additional strain on the grid.

According to McKinsey & Company, a single hyperscale data center can consume as much electricity as 80,000 homes combined. In 2022, data centers consumed about 200 terawatt-hours (TWh), close to 4 percent, of the total electricity used in the United States and approximately 460 TWh globally. That’s nearly the consumption of the entire State of Texas, which consumed approximately 475.4 TWh of electricity in the same year. However, this percentage is expected to increase significantly as demand for data processing and storage continues to grow. In 2026, data centers are expected to account for 6 percent, almost 260 TWh, of total electricity demand in the U.S.

EVs

According to the Texas Department of Motor Vehicles, approximately 170,000 EVs have been registered across the state of Texas as of 2023, with Texas receiving $408 million in funding to expand its EV charging network. As Cohn suggests, a central question remains: Where will these emerging economic drivers for Texas, such as EVs and AI, obtain their electric power?

EVs draw power from the grid every time they’re plugged in to charge. This may come as a shock to some, but “the thing that’s recharging EV batteries in ERCOT right now, is natural gas,” says Medlock. And as McKinsey & Company explains, the impact of switching to EVs on reducing greenhouse gas (GHG) emissions will largely depend on how much GHG is produced by the electricity used to charge them. This adds a layer of complexity as regulators look to decarbonize the power sector.

Depending on the charger, a single EV fast charger can pull anywhere from 50 kW to 350 kW of electricity per hour. Now, factor in the constant energy drain from data centers, our growing population using power for homes and businesses, and then account for the sudden impact of severe environmental events—which have increased in frequency and intensity—and it’s clear: Houston… we have a problem.

The Weather Wildcard

Texas is gearing up for its 2025 legislative session on January 14. The state's electricity grid once again stands at the forefront of political discussions. The question is not just whether our power will stay on during the next winter storm or scorching summer heatwave, but whether our approach to grid management is sustainable in the face of mounting challenges. The events of recent years, from Winter Storm Uri to unprecedented heatwaves, have exposed significant vulnerabilities in the Texas electricity grid, and while legislative measures have been taken, they have been largely patchwork solutions.

Winter Storm Uri in 2021 was a wake-up call, but it wasn’t the first or last extreme weather event to test the Texas grid. With deep freezes, scorching summers, and unpredictable storms becoming the norm rather than the exception, it is clear that the grid’s current state is not capable of withstanding these extremes. The measures passed in 2021 and 2023 were steps in the right direction, but they were reactive, not proactive. They focused on strengthening the grid against cold weather, yet extreme heat, a more consistent challenge in Texas, remains a less-addressed threat. The upcoming legislative session must prioritize comprehensive climate resilience strategies that go beyond cold weather prep.

“The planners for the Texas grid have important questions to address regarding anticipated weather extremes: Will there be enough energy? Will power be available when and where it is needed? Is the state prepared for extreme weather events? Are regional distribution utilities prepared for extreme weather events? Texas is not alone in facing these challenges as other states have likewise experienced extremely hot and dry summers, wildfires, polar vortexes, and other weather conditions that have tested their regional power systems,” writes Cohn.

Renewable Energy and Transmission

Texas leads the nation in wind and solar capacity (Map: Energy, Environment, and Policy in the US), however the complexity lies in getting that energy from where it’s produced to where it’s needed. Transmission lines are feeling the pressure, and the grid is struggling to keep pace with the rapid expansion of renewables. In 2005, the Competitive Renewable Energy Zones (CREZ) initiative showed that state intervention could significantly accelerate grid expansion. With renewables continuing to grow, the big question now is whether the state will step up again, or risk allowing progress to stall due to the inadequacy of the infrastructure in place. The legislature has a choice to make: take the lead in this energy transition or face the consequences of not keeping up with the pace of change.

Conclusion

The electrical grid continues to face serious challenges, especially as demand is expected to rise. There is hope, however, as regulators are fully aware of the strain. While our grid may be showing its age, this is the perfect time to shift from reacting to problems to getting ahead of them.

As Cohn puts it, “In the end, successful resolution of the various issues will carry significant benefits for existing Texas industrial, commercial, and residential consumers and have implications for the longer-term economic attractiveness of Texas. Suffice it to say, eyes will be, and should be, on the Texas legislature in the coming session.”

------------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn on September 11, 2024.

If we want to see real change, we need action by all parties. Photo via Getty Images

Texas vs the nation: Comparing energy grid resilience across America

guest column

The 2024 Atlantic hurricane season has proven disastrous for the United States. On July 8th, Hurricane Beryl barreled into Texas as a Category 1 storm knocking out power for nearly 3 million, causing over $2.5 billion in damages, and resulting in the deaths of at least 42 people.

More recently, Hurricanes Helene and Milton tore through the East Coast, dropping trillions of gallons of rain on Florida, Georgia, South Carolina, North Carolina, Virginia, and Tennessee, causing dams to collapse, flash flooding, trees to fall, millions of power outages, complete destruction of homes and businesses, and the deaths of hundreds.

Amidst the horror and rescue efforts, wariness of the increasing strength of natural disasters, and repeated failures of energy grids around the nation begs a few questions.

  1. Is there a version of a power grid that can better endure hurricanes, heat waves, and freezes?
  2. How does the Texas grid compare to other regional grids in the United States?
  3. What can we do to solve our power grid problems and who is responsible for implementing these solutions?

Hurricane-proof grids do not exist

There is no version of a grid anywhere in the United States that can withstand the brunt of a massive hurricane without experiencing outages.

The wind, rain, and flooding are simply too much to handle.

Some might wonder, “What if we buried the power lines?” Surely, removing the power lines from the harsh winds, rain, flying debris, and falling tree branches would be enough to keep the lights on, right?

Well, not necessarily. Putting aside the fact that burying power lines is incredibly expensive – estimates range from thousands to millions of dollars per mile buried – extended exposure to water from flood surges can still cause damage to buried lines. To pile on further, flood surges are likely to seriously damage substations and transformers. When those components fail, there’s no power to run through the lines, buried or otherwise.

Heat waves and winter freezes are a different story

During extreme weather events like heat waves or winter freezes, the strain on the grid goes beyond simple issues of generation and distribution—it’s also a matter of human behavior and grid limitations.

Building and maintaining a power grid is extremely expensive, and storing electricity is not only costly but technically challenging. Most grids are designed with little "buffer" capacity to handle peak demand moments, because much of the infrastructure sits idle during normal conditions. Imagine investing billions of dollars in a power plant or wind farm that only operates at full capacity a fraction of the time. It’s difficult to recoup that investment.

When extreme weather hits, demand spikes significantly while supply remains relatively static, pushing the grid to its limits. This imbalance makes it hard to keep up with the surge in energy usage.

At the same time, our relationship with electricity has changed—our need for electricity has only increased. We’ve developed habits—like setting thermostats to 70 degrees or lower during summer heat waves or keeping homes balmy in winter— that, while comfortable, place additional strain on the system.

Behavioral changes, alongside investments in infrastructure, are crucial to ensuring we avoid blackouts as energy demand continues to rise in the coming years.

How the Texas grid compares to other regional grids

Is the Texas grid really in worse shape compared to other regional grids around the U.S.?

In some ways, Texas is lagging and in others, Texas is a leader.

One thing you might have heard about the Texas grid is that it is isolated, which restricts the ability to import power from neighboring regions during emergencies. Unfortunately, connecting the Texas grid further would not be a one-size fits all solution for fixing its problems. The neighboring grids would need to have excess supply at the exact moment of need and have the capacity to transmit that power to the right areas of need. Situations often arise where the Texas grid needs more power, but New Mexico, Oklahoma, Arkansas, and Louisiana have none to spare because they are experiencing similar issues with supply and demand at the same time. Furthermore, even if our neighbors have some power to share, the infrastructure may not be sufficient to deliver the power where it’s needed within the state.

On the other hand, Texas is leading the nation in terms of renewable development. The Lone Star State is #1 in wind power and #2 in solar power, only behind California. There are, of course, valid concerns about heavy reliance on renewables when the wind isn’t blowing or the sun isn’t shining, compounded by a lack of large-scale battery storage. Then, there’s the underlying cost and ecological footprint associated with the manufacturing of those batteries.

Yet, the only state with more utility-scale storage than Texas is California.

In recent years, ERCOT has pushed generators and utility companies to increase their winterization efforts, incentivize the buildout of renewables and electricity storage. You might have also heard about the Texas Electricity Fund, which represents the state’s latest effort to further incentivize grid stability. Improvements are underway, but they may not be enough if homeowners and renters across the state are unwilling to set their thermostats a bit higher during extended heatwaves.

How can we fix the Texas grid?

Here’s the reality we must face – a disaster-proof, on-demand, renewable-powered grid is extremely expensive and cannot be implemented quickly. We must come to terms with the fact that the impact of natural disasters is unavoidable, no matter how much we “upgrade” the infrastructure.

Ironically, the most impactful solution out there is free and requires only a few seconds to implement. Simple changes to human behavior are the strongest tool we have at our disposal to prevent blackouts in Texas. By decreasing our collective demand for electricity at the right times, we can all help keep the lights on and prices low.

During peak hours, the cumulative effort is as simple as turning off the lights, turning the thermostat up a few degrees, and running appliances like dishwashers and laundry machines overnight.

Another important element we cannot avoid addressing is global warming. As the temperatures on the surface of the earth increase, the weather changes, and, in many cases, it makes it more volatile.

The more fossil fuels we burn, the more greenhouse gases are released into the atmosphere. More greenhouse gases in the atmosphere leads to more volatile weather. Volatile weather, in turn, contributes to extreme grid strain in the form of heat waves, winter freezes, and hurricanes. This is no simple matter to solve, because the energy needs and capabilities of different countries differ. That is why some countries around the globe continue to expand their investments in coal as an energy source, the fossil fuel that burns the dirtiest and releases the most greenhouse gases per unit.

While governments and private organizations continue to advance carbon capture, renewable, and energy storage technology efficiency, the individual could aid these efforts by changing our behavior. There are many impactful things we can do to reduce our carbon footprint, like adjusting our thermostat a few degrees, eating less red meat, driving cars less often, and purchasing fewer single-use plastics to name a few.

If we want to see real change, we need action by all parties. The complex system of generation, transmission, and consumption all need to experience radical change, or the vicious cycle will only continue.

———

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Hydrogen Technology Expo expected to bring largest event yet to NRG Center

where to be

The Hydrogen Technology Expo North America returns to NRG Center this month, June 25-26, and is slated to be the largest yet with an expected 10,000 attendees, 500 exhibitors, 200 speakers and more than 100 hours of content.

The 2025 event will feature cutting-edge technologies, interactive panel discussions and networking opportunities while targeting industries looking to adopt hydrogen and fuel cell technology to help decarbonize their sectors. The event will be co-located with the Carbon Capture Technology Expo North America.

The 2025 expo will introduce the new Ammonia Zone, a dedicated area fostering collaboration with industries leveraging ammonia as a key component in the hydrogen economy. It will also offer one- and two-day passes for the first time.

The expo is divided into five tracks:

  • Strategic forum
  • Hydrogen and alternative fuel production
  • Infrastructure and integration
  • Mobility and propulsion systems
  • Carbon capture, utilization and storage

Speakers include Martin Perez, former associate director for carbon capture at the office of clean energy demonstrations for the U.S. Department of Energy; Frank Wolak, president and CEO of Fuel Cell and Hydrogen Energy Association; Seema Santhakumar, hydrogen market development leader –Americas at Baker Hughes; Rich Byrnes, chief infrastructure officer for Port Houston; and many others. A full list of exhibitors can be found here.

Technologies on display will include storage systems, industrial plant technologies, liquefaction technologies, advanced materials and composites, gasification technology, simulation and evaluation, safety systems, hydrogen fuels, hydrogen injectors, line assemblies, fuel-cell control units and more.

“The Hydrogen Technology Expo offers industry leaders a valuable opportunity to network and stay informed about the latest developments in the rapidly evolving world of hydrogen,” Susan Shifflett, Executive Director at Texas Hydrogen Alliance, said. “We’re a proud partner of the show.”

Entry to the exhibition hall is free of charge. Passes start at $450. Find more information about how to register here.

Guest column: How growing energy demand will impact the Texas grid

Guest Column

Although Texas increased its power supply by 35% over the last four years, a recent report from ERCOT predicts that Texas’ energy demand will nearly double by 2030, with power supply projected to fall short of peak demand in a worst-case scenario beginning in summer 2026. There are many factors and variables that could either increase or decrease the grid’s stability.

Homebuilding in Texas

One of the most easily identifiable challenges is that the population of Texas is continuing to grow, which places greater demand on the state’s power grid. With its booming population, the state is now the second most populous in the country.

In 2024, Texas led the nation in homebuilding, issuing 15% of the country's new-home permits in 2024. Within the first two months of 2025, Houston alone saw more than 11,000 new building permits issued. The fact that Houston is the only major metro in the United States to lack zoning laws means it does not directly regulate density or separate communities by use type, which is advantageous for developers and homebuilders, who have far fewer restrictions to navigate when constructing new homes.

Large-scale computing facilities

Another main source of the growing demand for power is large-scale computing facilities such as data centers and cryptocurrency mining operations. These facilities consume large amounts of electricity to run and keep their computing equipment cool.

In 2022, in an effort to ensure grid reliability, ERCOT created a program to approve and monitor these large load (LFL) customers. The Large Flexible Load Task Force is a non-voting body that develops policy recommendations related to planning, markets, operations, and large load interconnection processes. LFL customers are those with an expected peak demand capacity of 75 megawatts or greater.

It is anticipated that electricity demand from customers identified by ERCOT as LFL will total 54 billion kilowatt-hours (kWh) in 2025, which is up almost 60% from the expected demand in 2024. If this comes to fruition, the demand from LFL customers would represent about 10% of the total forecast electricity consumption on the ERCOT grid this year. To accommodate the expected increase in power demand from large computing facilities, the state created the Texas Energy Fund, which provides grants and loans to finance the construction, maintenance, modernization, and operation of electric facilities in Texas. During this year’s 89th legislative session, lawmakers approved a major expansion of the Texas Energy Fund, allocating $5 billion more to help build new power plants and fund grid resilience projects.

Is solar power the key to stabilizing the grid?

The fastest-growing source of new electric generating capacity in the United States is solar power, and Texas stands as the second-highest producer of solar energy in the country.

On a regular day, solar power typically constitutes about 5% of the grid’s total energy output. However, during intense heat waves, when the demand for electricity spikes and solar conditions are optimal, the share of solar power can significantly increase. In such scenarios, solar energy’s contribution to the Texas grid can rise to as much as 20%, highlighting its potential to meet higher energy demands, especially during critical times of need.

While the benefits of solar power are numerous, such as reducing greenhouse gas emissions, lowering electricity bills, and promoting energy independence from the grid, it is important to acknowledge its barriers, such as:

  • Sunlight is intermittent and variable. Cloudy days, nighttime, and seasonal changes can affect energy production, requiring backup or storage solutions. Extreme weather conditions, such as hailstorms, can damage solar panels, affecting their performance and lifespan.
  • The upfront costs of purchasing and installing solar panels and associated equipment can be relatively high.
  • Large-scale solar installations may require significant land area, potentially leading to concerns about land use, habitat disruption, and conflicts with agricultural activities.
  • Integrating solar power into existing electricity grids can pose challenges due to its intermittent nature. Upgrading and modifying grids to handle distributed generation can be costly.

Although Texas has made progress in expanding its power supply, the rapid pace of population growth, homebuilding, and large-scale computing facilities presents challenges for grid stability. The gap between energy supply and demand needs to continue to be addressed with proactive planning. While solar power is a promising solution, there are realistic limitations to consider. A diversified approach that includes both renewable and traditional energy sources, along with ongoing legislative movement, is critical to ensuring a resilient energy future for Texas.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

Enbridge activates first solar power project in Texas

power on

Canadian energy company Enbridge Inc., whose gas transmission and midstream operations are based in Houston, has flipped the switch on its first solar power project in Texas.

The Orange Grove project, about 45 miles west of Corpus Christi, is now generating 130 megawatts of energy that feeds into the grid operated by the Electric Reliability Council of Texas (ERCOT). ERCOT supplies electricity to 90 percent of the state.

Orange Grove features 300,000 solar panels installed on more than 920 acres in Jim Wells County. Construction began in 2024.

Telecom giant AT&T has signed a long-term power purchase agreement with Enbridge to buy energy from Orange Grove at a fixed price. Rather than physically acquiring this power, though, AT&T will receive renewable energy certificates. One renewable energy certificate represents the consumption of one megawatt of grid power from renewable energy sources such as solar and wind.

“Orange Grove is a key part of our commitment to develop, construct, and operate onshore renewable projects across North America,” Matthew Akman, executive vice president of corporate strategy and president of renewable power at Enbridge, said in 2024.

Orange Grove isn’t Enbridge’s only Texas project. Enbridge owns the 110-megawatt Keechi wind farm in Jacksboro, about 60 miles northwest of Fort Worth, and the 249.1-megawatt Chapman Ranch wind farm near Corpus Christi, along with a majority stake in the 203.3-megatt Magic Valley I wind farm near Harlingen. The company’s 815-megawatt Sequoia solar project, east of Abilene, is scheduled to go online in early 2026. Enbridge has signed long-term power purchase agreements with AT&T and Toyota North America for energy produced by Sequoia.

During a recent earnings call, Enbridge President and CEO Greg Ebel said that given the “unprecedented demand for power generation across North America,” driven largely by explosive growth in the data center sector, the company expects to unveil more renewable energy projects.

“The policy landscape for renewables is dynamic,” Ebel said, “but we think we are well-positioned with our portfolio of late-stage (projects).”