Permascand USA's new Houston facility will manufacture high-performance electrodes from new and recycled materials. Photo via Getty Images

Permascand USA Inc., a subsidiary of Swedish manufacturing company Permascand, has been awarded a $13.7 million tax credit by the U.S. Department of Energy (DOE) to expand across the country, including a new clean hydrogen manufacturing facility in Houston.

The new Houston facility will manufacture high-performance electrodes from new and recycled materials.

"We are proud to receive the support of the U.S. Department of Energy within their objective for clean energy," Permascand CEO Fredrik Herlitz said in a news release. "Our mission is to provide electrochemical solutions for the global green transition … This proposed project leverages Permascand’s experience in advanced technologies and machinery and will employ a highly skilled workforce to support DOE’s initiative in lowering the levelized cost of hydrogen.”

The funding comes from the DOE’s Qualifying Advanced Energy Project Credit program, which focuses on clean energy manufacturing, recycling, industrial decarbonization and critical materials projects.

The Permascand proposal was one of 140 projects selected by the DOE with over 800 concept papers submitted last summer. The funding is part of $6 billion in tax credits in the second round of the Qualifying Advanced Energy Project Credit program that was deployed in January.

So far credits have been granted to approximately 250 projects across more than 40 states, with project investments over $44 billion dollars, according to the Department of Treasury. Read more here.
Envana Software Solutions' tech allows an oil and gas company to see a full inventory of greenhouse gases. Photo via Getty Images

Houston joint venture secures $5.2M for AI-powered methane tracking tech

fresh funds

Houston-based Envana Software Solutions has received more than $5.2 million in federal and non-federal funding to support the development of technology for the oil and gas sector to monitor and reduce methane emissions.

Thanks to the work backed by the new funding, Envana says its suite of emissions management software will become the industry's first technology to allow an oil and gas company to obtain a full inventory of greenhouse gases.

The funding comes from a more than $4.2 million grant from the U.S. Department of Energy (DOE) and more than $1 million in non-federal funding.

“Methane is many times more potent than carbon dioxide and is responsible for approximately one-third of the warming from greenhouse gases occurring today,” Brad Crabtree, assistant secretary at DOE, said in 2024.

With the funding, Envana will expand artificial intelligence (AI) and physics-based models to help detect and track methane emissions at oil and gas facilities.

“We’re excited to strengthen our position as a leader in emissions and carbon management by integrating critical scientific and operational capabilities. These advancements will empower operators to achieve their methane mitigation targets, fulfill their sustainability objectives, and uphold their ESG commitments with greater efficiency and impact,” says Nagaraj Srinivasan, co-lead director of Envana.

In conjunction with this newly funded project, Envana will team up with universities and industry associations in Texas to:

  • Advance work on the mitigation of methane emissions
  • Set up internship programs
  • Boost workforce development
  • Promote environmental causes

Envana, a software-as-a-service (SaaS) startup, provides emissions management technology to forecast, track, measure and report industrial data for greenhouse gas emissions.

Founded in 2023, Envana is a joint venture between Houston-based Halliburton, a provider of products and services for the energy industry, and New York City-based Siguler Guff, a private equity firm. Siguler Gulf maintains an office in Houston.

“Envana provides breakthrough SaaS emissions management solutions and is the latest example of how innovation adds to sustainability in the oil and gas industry,” Rami Yassine, a senior vice president at Halliburton, said when the joint venture was announced.

Nine organizations were named to the Department of Energy's new Regional Energy Democracy Initiative, which aims to "improve the well-being of communities burdened by the energy system. Photo via Getty Images

DOE taps Texas and Louisiana organizations for new clean energy consortium

clean team

The U.S. Department of Energy (DOE) has chosen nine participants for the new Regional Energy Democracy Initiative (REDI), a consortium that will help guide clean energy projects in Texas and Louisiana.

“REDI’s pilot program will help ensure that communities in Texas and Louisiana — states that are poised to receive over $8 billion for carbon reduction and clean energy infrastructure projects — have the resources they need to help steer the historic clean energy investments in their backyards,” Jennifer Granholm, U.S. Energy Secretary, said in a statement.

The nine inaugural members of REDI are:

The DOE says REDI “represents a significant step towards a more resilient energy future for Texas and Louisiana. By fostering collaboration between communities and fostering collaboration between stakeholders, REDI aims to ensure that the benefits of energy projects are shared by all Americans.”

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

University of Houston secures $3.6M from DOE program to fund sustainable fuel production

freshly granted

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

In all, DOE recently allocated $518 million to 23 CCUS projects in the U.S. Photo via Getty Images

DOE dishes out funding to 2 Houston carbon caption projects

ccus news

Two Houston companies have received federal funding to develop carbon capture and storage projects.

Evergreen Sequestration Hub LLC, a partnership of Houston-based Trace Carbon Solutions and Jacksonville, Mississippi-based Molpus Woodlands Group, got more than $27.8 million from the U.S. Department of Energy for its Evergreen Sequestration Hub project in Louisiana. DOE says the project is valued at $34.8 million.

The hub will be built on about 20,000 acres of timberland in Louisiana’s Calcasieu and Beauregard parishes for an unidentified customer. It’ll be capable of storing about 250 million metric tons of carbon dioxide.

Trace Carbon Solutions, a subsidiary of Trace Midstream Partners, is developing CCS assets and supporting midstream infrastructure across North America. Molpus, an investment advisory firm, buys, manages, and sells timberland as an investment vehicle for pension funds, college endowments, foundations, insurance companies, and high-net-worth investors.

Another Houston company, RPS Expansion LLC, has received $9 million from the DOE to expand the River Parish Sequestration Project. Following the expansion, the project will be able to store up to 384 million metric tons of carbon dioxide. The CCUS hub is between Baton Rouge and New Orleans.

DOE says the River Parish expansion is valued at $11.8 million.

Also receiving DOE funding is a CCUS project to be developed off the coast of Corpus Christi. The developer is the Southern States Energy Board, based in Peachtree Corners, Georgia.

DOE is chipping in more than $51.1 million for the nearly $64 million hub. It’s estimated that about 35 million metric tons of carbon dioxide emissions are released each year from about 50 industrial and power facilities within a 100-mile radius of Mustang Island. Port Aransas is located on the 18-mile-long island.

In all, DOE recently allocated $518 million to 23 CCUS projects in the U.S.

“The funding … will help ensure that carbon storage projects — crucial to slashing harmful carbon pollution — are designed, built, and operated safely and responsibly across all phases of development to deliver healthier communities as well as high-quality American jobs,” Brad Crabtree, assistant DOE secretary for fossil energy and carbon management, says in a news release.

Named Project Arch, the facility will be the first large-scale operation of its kind in the country. It's expected to break ground next year. Photo via Getty Images

DOE doles out $80M for Houston superconductor tech manufacturer's new facility

fresh funding

Fresh off a recent raise, an energy transition startup has been selected for a U.S. Department of Energy-backed $80 million project.

MetOx International, which develops and manufactures high-temperature superconducting (HTS) wire and announced it closed a $25 million series B extension, will negotiate $80 million in funding from the DOE to stand up an advanced manufacturing facility in the southeastern United States.

Named Project Arch, the facility will be the first large-scale operation of its kind in the country. It's expected to break ground next year.

"We are thrilled to receive this support from the Department of Energy, which allows us to bring cutting-edge manufacturing and over 200 high tech job opportunities to the southeastern United States," Bud Vos, CEO of MetOx, says in a statement. "Project Arch not only represents a transformative milestone for our company, but it establishes the U.S. as a true leader in HTS technology.

"This project will have an immediate and tangible impact on the local economy and the energy sector, powering new technologies that rely on the unmatched power-carrying capacity of superconductors," he continues. "Through Project Arch, we are driving a more resilient, efficient, and sustainable energy future—for the U.S. and the world."

HTS wire technology is critical for the energy transition, especially amid rising data center growth, and for next generation wind turbines and interconnections.

"The transition to America's clean energy future is being shaped by communities filled with the valuable talent and experience that comes from powering our country for decades," adds U.S. Secretary of Energy Jennifer Granholm. "By leveraging the know-how and skillset of the former coal workforce, we are strengthening our national security while helping advance forward-facing technologies and revitalize communities across the nation."

MetOx's technology originated out of the University of Houston and was founded in 1998 by Alex Ignatiev, UH professor emeritus of physics and a fellow of the National Academy of Inventors. Last year, the company secured $3 million in funding from the U.S. Department of Energy to support the advancement of its proprietary manufacturing technology for its HTS wire.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Report: Texas solar power, battery storage helped stabilize grid in summer 2024, but challenges remain

by the numbers

Research from the Federal Reserve Bank of Dallas shows that solar power and battery storage capacity helped stabilize Texas’ electric grid last summer.

Between June 1 and Aug. 31, solar power met nearly 25 percent of midday electricity demand within the Electric Reliability Council of Texas (ERCOT) power grid. Rising solar and battery output in ERCOT assisted Texans during a summer of triple-digit heat and record load demands, but the report fears that the state’s power load will be “pushed to its limits” soon.

The report examined how the grid performed during more demanding hours. At peak times, between 11 a.m. and 2 p.m. in the summer of 2024, solar output averaged nearly 17,000 megawatts compared with 12,000 megawatts during those hours in the previous year. Between 6 p.m. and 9 p.m., discharge from battery facilities averaged 714 megawatts in 2024 after averaging 238 megawatts for those hours in 2023. Solar and battery output have continued to grow since then, according to the report.

“Batteries made a meaningful contribution to what those shoulder periods look like and how much scarcity we get into during these peak events,” ERCOT CEO Pablo Vegas said at a board of directors conference call.

Increases in capacity from solar and battery-storage power in 2024 also eclipsed those of 2023. In 2023 ECOT added 4,570 megawatts of solar, compared to adding nearly 9,700 megawatts in 2024. Growth in battery storage capacity also increased from about 1,500 megawatts added in 2023 to more than 4,000 megawatts added in 2024. Natural gas capacity also saw increases while wind capacity dropped by about 50 percent.

Texas’ installation of utility-scale solar surpassed California’s in the spring of last year, and jumped from 1,900 megawatts in 2019 to over 20,000 megawatts in 2024 with solar meeting about 50 percent of Texas' peak power demand during some days.

While the numbers are encouraging, the report states that there could be future challenges, as more generating capacity will be required due to data center construction and broader electrification trends. The development of generating more capacity will rely on multiple factors like price signals and market conditions that invite more baseload and dispatchable generating capacity, which includes longer-duration batteries, and investment in power purchase agreements and other power arrangements by large-scale consumers, according to the report.

Additionally, peak demand during winter freezes presents challenges not seen in the summer. For example, in colder months, peak electricity demand often occurs in the early morning before solar energy is available, and it predicts that current battery storage may be insufficient to meet the demand. The analysis indicated a 50% chance of rolling outages during a cold snap similar to December 2022 and an 80% chance if conditions mirror the February 2021 deep freeze at the grid’s current state.

The report also claimed that ERCOT’s energy-only market design and new incentive structures, such as the Texas Energy Fund, do not appear to be enough to meet the predicted future magnitude and speed of load growth.

Read the full report here.

Houston clean energy pioneer earns prestigious Welch Foundation award

Awards Season

A Rice University professor has earned a prestigious award from the Houston-based Welch Foundation, which supports chemistry research.

The foundation gave its 2025 Norman Hackerman Award in Chemical Research to Haotian Wang for his “exceptionally creative” research involving carbon dioxide electrochemistry. His research enables CO2 to be converted into valuable chemicals and fuels.

The award included $100,000 and a bronze sculpture.

“Dr. Wang’s extensive body of work and rigorous pursuit of efficient electrochemical solutions to practical problems set him apart as a top innovator among early-career researchers,” Catherine Murphy, chairwoman of the foundation’s Scientific Advisory Board, said in a news release.

Wang is an associate professor in the Department of Chemical and Biomolecular Engineering at Rice. The department’s Wang Group develops nanomaterials and electrolyzers for energy and environmental uses, such as energy storage, chemical and fuel generation, green synthesis and water treatment.

Wang also is co-founder of Solidec, a Houston startup that aims to turn his innovations into low-carbon fuels, carbon-negative hydrogen and carbon-neutral peroxide. The startup extracts molecules from water and air, then transforms them into pure chemicals and fuels that are free of carbon emissions.

Solidec has been selected for Chevron Technology Ventures’ catalyst program, a Rice One Small Step grant, a U.S. Department of Energy grant, and the first cohort of the Activate Houston program.

“Dr. Wang’s use of electrochemistry to close the carbon cycle and develop renewable sources of industrial chemicals directly intersects with the Welch Foundation mission of advancing chemistry while improving life,” Fred Brazelton, chairman and director of the Welch Foundation, said in the release.

Ramamoorthy Ramesh, executive vice president for research at Rice University, added: “We are proud to (Dr. Wang) at Rice. He’s using chemical engineering to solve a big problem for humanity, everything that the Welch Foundation stands for.”

Last year, the Hackerman Award went to Baylor College of Medicine's Livia Schiavinato Eberlin, who's known for her groundbreaking work in the application of mass spectrometry technologies, which are changing how physicians treat cancer and analyze tissues. Read more here.

Houston venture firm invests in Virginia fusion power plant company in collaboration with TAMU

fusion funding

Houston-based climate tech venture firm Ecosphere Ventures has partnered with Virginia Venture Partners and Virginia Innovation Partnership Corporation’s venture capital program to invest in Virginia-based NearStar Fusion Inc., which develops fusion energy power plants.

NearStar aims to use its proprietary plasma railgun technology to safely and affordably power baseload electricity on and off the power grid through a Magnetized Target Impact Fusion (MTIF) approach, according to a news release from the company.

NearStar’s power plants are designed to retrofit traditional fossil fuel power plants and are expected to serve heavy industry, data centers and military installations.

“Our design is well-suited to retrofit coal-burning power plants and reuse existing infrastructure such as balance of plant and grid connectivity, but I’m also excited about leveraging the existing workforce because you won’t need PhDs in plasma physics to work in our power plant,” Amit Singh, CEO of NearStar Fusion, said in a news release.

NearStar will also conduct experiments at the Texas A&M Hypervelocity Impact Laboratory (HVIL) in Bryan, Texas, on prototype fuel targets and evolving fuel capsule design. The company plans to publish the results of the experiments along with a concept paper this year. NearStar will work with The University of Alabama in Huntsville (UAH) to develop computer performance models for target implosions.

NearStar’s MTIF approach will utilize deuterium, which is a common isotope of hydrogen found in water. The process does not use tritium, which NearStar believes will save customers money.

“While avoiding tritium in our power plant design reduces scientific gain of the fusion process, we believe the vastly reduced system complexity and cost savings of eliminating complicated supply chains, regulatory oversight, and breeding of tritium allows NearStar to operate power plants more profitably and serve more customers worldwide, ”Douglas Witherspoon, NearStar founder and chief scientist, said in a news release.

Houston’s Ecosphere Ventures invests in climate tech and sustainability innovations from pre-seed to late-seed stages in the U.S. Ecosphere also supports first-time entrepreneurs and technical founders.