Last Energy will build a 5-megawatt reactor at the Texas A&M-RELLIS campus. Photo courtesy Last Energy.

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

The Clean Hydrogen Buyers Alliance plans to create the Gulf Coast Hydrogen Index to bring to bring transparency and confidence to hydrogen pricing. Photo via Getty Images

Houston organization proposes Gulf Coast index for hydrogen market

hydrogen index

The Clean Hydrogen Buyers Alliance has proposed an index aimed at bringing transparency to pricing in the emerging hydrogen market.

The Houston-based alliance said the Gulf Coast Hydrogen Index, based on real-time data, would provide more clarity to pricing in the global market for hydrogen. The benchmarking effort is being designed to benefit clean hydrogen buyers, sellers and investors. The index would help position the U.S. “as the trading anchor for hydrogen’s next chapter as a globally traded commodity,” the alliance said.

According to ResearchAndMarkets.com, the global market for clean hydrogen was valued at $200 billion in 2024 and is projected to reach $700 billion by 2040.

John Flory, president of the alliance, said the lack of a pricing index has relegated hydrogen to niche-market status.

“Capital is waiting. Buyers are ready. But until now, there’s been no credible, transparent pricing signal to guide clean hydrogen investing or contracting,” Edward Morse, co-chairman of the Clean Hydrogen Transaction Advisory Committee, said in a news release.

The index would treat the Gulf Coast as the primary delivery hub for pipeline-grade hydrogen in three categories: basic, low-carbon and ultra-low-carbon. It would be similar to the Henry Hub index for pricing of natural gas.

Roger Ballentine, co-chairman of the clean energy advisory committee, said the hydrogen index would build confidence in this energy source among government agencies, companies and investors. A Henry Hub-style benchmark for hydrogen “provides clarity, reduces risk, and lays the foundation for clean energy to become a globally traded commodity critical to decarbonization,” he said.

The Gulf Coast, with Texas as the focal point, is key to the evolution of the U.S. clean hydrogen economy, according to the Fuel Cell and Hydrogen Energy Association.

At the core of the Gulf Coast’s role is the U.S. Department of Energy's selection of the Gulf Coast as one of the country’s seven regional hubs for clean hydrogen. However, the DOE has proposed cutting funding for the HyVelocity Gulf Coast Hydrogen Hub, a $1.2 billion development in Texas and Louisiana by AES, Air Liquide, Chevron, ExxonMobil, MHI Hydrogen Infrastructure and Ørsted, according to a new list of proposed DOE funding cancellations.

A list of proposed DOE funding cancellations shows potential cuts for Houston-area companies. Photo via Getty Images.

DOE proposes cutting $1.2 billion in funding for hydrogen hub

funding cuts

The U.S. Department of Energy has proposed cutting $1.2 billion in funding for the HyVelocity Gulf Coast Hydrogen Hub, a clean energy project backed by AES, Air Liquide, Chevron, ExxonMobil, Mitsubishi Power Americas and Ørsted.

The HyVelocity project, which would produce clean hydrogen, appears on a new list of proposed DOE funding cancellations. The list was obtained by Latitude Media.

As of November, HyVelocity had already received $22 million of the potential $1.2 billion in DOE funding.

Other than the six main corporate backers, supporters of HyVelocity include the Center for Houston’s Future, Houston Advanced Research Center, Port Houston, University of Texas at Austin, Shell, the Texas governor’s office, Texas congressional delegation, and the City of Fort Worth.

Kristine Cone, a spokeswoman for GTI Energy, the hub’s administrator, told EnergyCapital that it hadn’t gotten an update from DOE about the hub’s status.

The list also shows the Magnolia Sequestration Hub in Louisiana, being developed by Occidental Petroleum subsidiary 1PointFive, could lose nearly $19.8 million in federal funding and the subsidiary’s South Texas Direct Air Capture (DAC) Hub on the King Ranch in Kleberg County could lose $50 million. In September, 1Point5 announced the $50 million award for its South Texas hub would be the first installment of up to $500 million in federal funding for the project.

Other possible DOE funding losses for Houston-area companies on the list include:

  • A little over $100 million earmarked for Houston-based BP Carbon Solutions to develop carbon storage projects
  • $100 million earmarked for Dow to produce battery-grade solvents for lithium-ion batteries. Dow operates chemical plants in Deer Park and LaPorte
  • $39 million earmarked for Daikin Comfort Technologies North America to produce energy-efficient heat pumps. The HVAC company operates the Daikin Texas Technology Park in Waller
  • Nearly $6 million earmarked for Houston-based Baker Hughes Energy Transition to reduce methane emissions from flares
  • $3 million earmarked for Spring-based Chevron to explore development of a DAC hub in Northern California
  • Nearly $2.9 million earmarked for Houston-based geothermal energy startup Fervo Energy’s geothermal plant in Utah
U.S. Rep. Morgan Luttrell, a Magnolia Republican, and Hertha Metals founder and CEO Laureen Meroueh toured Hertha’s Conroe plant in August. Photo courtesy Hertha Metals/Business Wire.

Houston-area sustainable steel company emerges from stealth with $17M in VC funding

heavy metals

Conroe-based Hertha Metals, a producer of substantial steel, has hauled in more than $17 million in venture capital from Khosla Ventures, Breakthrough Energy Fellows, Pear VC, Clean Energy Ventures and other investors.

The money has been put toward the construction and the launch of its 1-metric-ton-per-day pilot plant in Conroe, where its breakthrough in steelmaking has been undergoing tests. The company uses a single-step process that it claims is cheaper, more energy-efficient and equally as scalable as conventional steelmaking methods. The plant is fueled by natural gas or hydrogen.

The company, founded in 2022, plans to break ground early next year on a new plant. The facility will be able to produce more than 9,000 metric tons of steel per year.

Hertha said in a news release that its process, which converts low-grade iron ore into molten steel or high-purity iron, “doesn’t just materially lower cost and energy use — it fundamentally expands our capacity to produce iron and steel at scale, by unlocking a wider range of iron ore feedstocks.”

Laureen Meroueh, founder and CEO of Hertha, says the company’s process will fill a gap in U.S. steel production.

“We’re not just reinventing steelmaking; we’re redefining what’s possible in materials, manufacturing, and national resilience,” Meroueh says.

Hertha says it’s in talks with magnet producers — which make permanent magnets and magnetic assemblies from raw materials such as iron — to become a U.S. supplier of high-purity iron. In its next stage of growth, Hertha will aim to operate at a capacity of 500,000 metric tons of steel production per year.

The company won the Department of Energy's Summer Energy Program for Innovation Clusters (EPIC) Startup Pitch Competition last summer. Read more here.

A new report from the Department of Energy says the risk of power blackouts will be 100 times greater in 2030. Photo via Getty Images.

DOE report warns of widespread power blackouts by 2030 amid grid challenges

grid report

Scheduled retirements of traditional power plants, dependence on energy sources like wind and solar, and the growth of energy-gobbling data centers put the U.S. — including Texas — at much greater risk of massive power outages just five years from now, a new U.S. Department of Energy report suggests.

The report says the U.S. power grid won’t be able to sustain the combined impact of plant closures, heavy reliance on renewable energy, and the boom in data center construction. As a result, the risk of power blackouts will be 100 times greater in 2030, according to the report.

“The status quo of more [plant] retirements and less dependable replacement generation is neither consistent with winning the AI race and ensuring affordable energy for all Americans, nor with continued grid reliability … . Absent intervention, it is impossible for the nation’s bulk power system to meet the AI growth requirements while maintaining a reliable power grid and keeping energy costs low for our citizens,” the report says.

Avoiding planned shutdowns of traditional energy plants, such as those fueled by coal and oil, would improve grid reliability, but a shortfall would still persist in the territory served by the Electric Reliability Council of Texas (ERCOT), particularly during the winter, the report says. ERCOT operates the power grid for the bulk of Texas.

According to the report, 104 gigawatts of U.S. power capacity from traditional plants is set to be phased out by 2030. “This capacity is not being replaced on a one-to-one basis,” says the report, “and losing this generation could lead to significant outages when weather conditions do not accommodate wind and solar generation.”

To meet reliability targets, ERCOT would need 10,500 megawatts of additional “perfect” capacity by 2030, the report says. Perfect capacity refers to maximum power output under ideal conditions.

“ERCOT continues to undergo rapid change, and supply additions will have a difficult time keeping up with demand growth,” Brent Nelson, managing director of markets and strategy at Ascend Analytics, a provider of data and analytics for the energy sector, said in a release earlier this summer. “With scarcity conditions ongoing and weather-dependent, expect a volatile market with boom years and bust years.”
The Department of Energy has axed federal funding for Houston-area clean energy projects from ExxonMobil, Calpine and Ørsted. Photo via exxonmobil.com

Houston-area clean energy projects lose more than $700M in federal funds

funding cut

The federal government has canceled more than $700 million in funding for three clean energy projects in the Houston area.

In all, the U.S. Department of Energy (DOE) recently wiped out $3.7 billion in funding for 24 carbon capture and decarbonization projects across the country.

Houston-area projects that took a hit are:

It’s unclear how the loss of federal funding will affect the three Houston-area projects.

All $3.7 billion from the DOE was awarded in 2024 and 2025 during the Biden administration—in some cases days before President Trump took office.

“While the previous administration failed to conduct a thorough financial review before signing away billions of taxpayer dollars, the Trump administration is doing our due diligence to ensure we are utilizing taxpayer dollars to strengthen our national security, bolster affordable, reliable energy sources, and advance projects that generate the highest possible return on investment,” U.S. Energy Secretary Chris Wright said in a release.

Advocates for clean energy sharply criticized the DOE’s action:

  • Jessie Stolark, executive director of the Carbon Capture Coalition, said cancellation of the 24 DOE-funded projects “is a major step backward in the nationwide deployment of carbon management technologies. It is hugely disappointing to see these projects canceled — projects that had already progressed through a rigorous, months-long review process by technical experts at DOE.”
  • Iliana Paul, deputy director for the Sierra Club’s industrial transformation campaign, complained that the Trump administration “killed dozens of major investments in American competitiveness, good jobs, and cleaner air to support Trump’s tax cuts and line the pockets of billionaires. These projects were not just pro-climate; they were pro-jobs, pro-innovation, and pro-public health. American workers, fenceline communities, and forward-thinking companies have had the rug pulled out from under them.”
  • Conrad Schneider, senior U.S. director of the Clean Air Taskforce, said the DOE’s move “is bad for U.S. competitiveness in the global market and also directly contradictory to the administration’s stated goals of supporting energy production and environmental innovation. Canceling cutting-edge technology demonstrations, including support for carbon capture and storage projects, undercuts U.S. competitiveness at a time when there is a growing global market for cleaner industrial products and technologies.”
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”

Expert examines how far Texas has come in energy efficiency

Guest Column

Texas leads the nation in energy production, providing about one-fourth of the country’s domestically produced primary energy. It is also the largest energy-consuming state, accounting for about one-seventh of the nation’s total energy use, and ranks sixth among the states in per capita energy consumption.

However, because Texas produces significantly more energy than it consumes, it stands as the nation’s largest net energy supplier. October marked National Energy Awareness Month, so this is an ideal time to reflect on how far Texas has come in improving energy efficiency.

Progress in Clean Energy and Grid Resilience

Texas continues to lead the nation in clean energy adoption and grid modernization, particularly in wind and solar power. With over 39,000 MW of wind capacity, Texas ranks first in the country in wind-powered electricity generation, now supplying more than 10% of the state’s total electricity.

This growth was significantly driven by the Renewable Portfolio Standard (RPS), which requires utility companies to produce new renewable energy in proportion to their market share. Initially, the RPS aimed to generate 10,000 MW of renewable energy capacity by 2025. Thanks to aggressive capacity building, this ambitious target was reached much earlier than anticipated.

Solar energy is also expanding rapidly, with Texas reaching 16 GW of solar capacity as of April 2024. The state has invested heavily in large-scale solar farms and supportive policies, contributing to a cleaner energy mix.

Texas is working to integrate both wind and solar to create a more resilient and cost-effective grid. Efforts to strengthen the grid also include regulatory changes, winterization mandates, and the deployment of renewable storage solutions.

While progress is evident, experts stress the need for continued improvements to ensure grid reliability during extreme weather events, when we can’t rely on the necessities for these types of energy sources to thrive. To put it simply, the sun doesn’t always shine, and the wind doesn’t always blow.

Federal Funding Boosts Energy Efficiency

In 2024, Texas received $22.4 million, the largest share of a $66 million federal award, from the U.S. Department of Energy’s Energy Efficiency Revolving Loan Fund Capitalization Grant Program.

The goal of this funding is to channel federal dollars into local communities to support energy-efficiency projects through state-based loans and grants. According to the DOE, these funds can be used by local businesses, homeowners, and public institutions for energy audits, upgrades, and retrofits that reduce energy consumption.

The award will help establish a new Texas-based revolving loan fund modeled after the state’s existing LoanSTAR program, which already supports cost-effective energy retrofits for public facilities and municipalities. According to the Texas Comptroller, as of 2023, the LoanSTAR program had awarded more than 337 loans totaling over $600 million.

In addition to expanding the revolving loan model, the state plans to use a portion of the DOE funds to offer free energy audit services to the public. The grant program is currently under development.

Building on this momentum, in early 2025, Texas secured an additional $689 million in federal funding to implement the Home Energy Performance-Based, Whole House (HOMES) rebate program and the Home Electrification and Application Rebate (HEAR) program.

This investment is more than five times the state’s usual energy efficiency spending. Texas’s eight private Transmission and Distribution Utilities typically spend about $110 million annually on such measures. The state will have multiple years to roll out both the revolving loan and rebate programs.

However, valuable federal tax incentives for energy-efficient home improvements are set to expire on December 31, 2025, including:

  • The Energy Efficiency Home Improvement Credit allows homeowners to claim up to $3,200 per year in federal income tax credits, covering 30% of the cost of eligible upgrades, such as insulation, windows, doors, and high-efficiency heating and cooling systems.
  • The Residential Clean Energy Credit provides a 30% income tax credit for the installation of qualifying clean energy systems, including rooftop solar panels, wind turbines, geothermal heat pumps, and battery storage systems.

As these incentives wind down, the urgency grows for Texas to build on the positive gains from the past several years despite reduced federal funding. The state has already made remarkable strides in clean energy production, grid modernization, and energy-efficiency investments, but the path forward requires a strategic and inclusive approach to energy planning. Through ongoing state-federal collaboration, community-driven initiatives, and forward-looking policy reforms, Texas can continue its progress, ensuring that future energy challenges are met with sustainable and resilient solutions.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

Meta to buy all power from new ENGIE Texas solar farm

power purchase

Meta, the parent company of social media platform Facebook, has agreed to buy all of the power from a $900 million solar farm being developed near Abilene by Houston-based energy company ENGIE North America.

The 600-megawatt Swenson Ranch solar farm, located in Stonewall County, will be the largest one ever built in the U.S. by ENGIE. The solar farm is expected to go online in 2027.

Meta will use electricity generated by the solar farm to power its U.S. data centers. All told, Meta has agreed to purchase more than 1.3 gigawatts of renewable energy from four ENGIE projects in Texas.

“This project marks an important step forward in the partnership between our two companies and their shared desire to promote a sustainable and competitive energy model,” Paulo Almirante, ENGIE’s senior executive vice president of renewable and flexible power, said in a news release.

In September, ENGIE North America said it would collaborate with Prometheus Hyperscale, a developer of sustainable liquid-cooled data centers, to build data centers at ENGIE-owned renewable energy and battery storage facilities along the I-35 corridor in Texas. The corridor includes Austin, Dallas-Fort Worth, San Antonio and Waco.

The first projects under the ENGIE-Prometheus umbrella are expected to go online in 2026.

ENGIE and Prometheus said their partnership “brings together ENGIE's deep expertise in renewables, batteries, and energy management and Prometheus' highly efficient liquid-cooled data center design to meet the growing demand for reliable, sustainable compute capacity — particularly for AI and other high-performance workloads.”