A new study puts Texas at No. 2 among the states most at risk for power outages this summer. Photo via Getty Images

Warning: Houston could be in for an especially uncomfortable summer.

A new study from solar energy company Wolf River Electric puts Texas at No. 2 among the states most at risk for power outages this summer. Michigan tops the list.

Wolf River Electric analyzed the number of large-scale outages that left more than 5,000 utility customers, including homes, stores and schools, without summertime electricity from 2019 to 2023. During that period, Texas experienced 7,164 summertime power outages.

Despite Michigan being hit with more summertime outages, Texas led the list of states with the most hours of summertime power outages — an annual average of 35,440. That works out to 1,477 days. “This means power cuts in Texas tend to last longer, making summer especially tough for residents and businesses,” the study says.

The Electric Reliability Council of Texas (ERCOT), which operates the electric grid serving 90 percent of the state, predicts its system will set a monthly record for peak demand this August — 85,759 megawatts. That would exceed the current record of 85,508 megawatts, dating back to August 2023.

In 2025, natural gas will account for 37.7 percent of ERCOT’s summertime power-generating capacity, followed by wind (22.9 percent) and solar (19 percent), according to an ERCOT fact sheet.

This year, ERCOT expects four months to surpass peak demand of 80,000 megawatts:

  • June 2025 — 82,243 megawatts
  • July 2025 — 84,103 megawatts
  • August 2025 — 85,759 megawatts
  • September 2025 — 80,773 megawatts

One megawatt is enough power to serve about 250 residential customers amid peak demand, according to ERCOT. Using that figure, the projected peak of 85,759 megawatts in August would supply enough power to serve more than 21.4 million residential customers in Texas.

Data centers, artificial intelligence and population growth are driving up power demand in Texas, straining the ERCOT grid. In January, ERCOT laid out a nearly $33 billion plan to boost power transmission capabilities in its service area.
For the first time, Texas's ERCOT grid will be connected to other states' grids thanks to funding from the Department of Energy. Photo via Getty Images

$360M DOE grant to fund project that will connect ERCOT to US power grid

powering on

Thanks to recently announced funding, the power grid for the territory served by the Electric Reliability Council of Texas (ERCOT) will be connected to grids in other states.

Officials hope building a 320-mile transmission line that connects the ERCOT electric grid to electric grids in the Southeast will prevent power outages like the massive blackout that occurred in 2022 when a winter storm blasted Texas.

San Francisco-based Pattern Energy says its Southern Spirit project will cost more than $2.6 billion. Full-scale construction is supposed to get underway in 2028, and the project is set to go online in 2031.

The U.S. Department of Energy recently approved up to $360 million for the transmission project. The transmission line will stretch from Texas’ border with Louisiana to Mississippi. It’ll supply about 3,000 megawatts of electricity in either direction. That’s enough power for about 750,000 residential customers during ERCOT’s peak hours.

ERCOT’s more than 54,100 miles of transmission lines supply power to about 90 percent of Texans.

“The U.S. transmission network is the backbone of our nation’s electricity system. Though our grid has served U.S. energy needs for more than a century, our country’s needs are changing,” David Turk, under secretary at the Department of Energy, says in a news release.

“DOE’s approach to deploying near-term solutions and developing long-term planning tools will ensure our electric grid is more interconnected and resilient than ever before,” Turk adds, “while also supporting greater electricity demand.”

The other three projects that recently received funding from the DOE include:

  • Aroostook Renewable Project, which will construct a new substation in Haynesville, Maine, and a 111-mile transmission line connecting to a substation in Pittsfield, Maine.
  • Cimarron Link, a 400-mile HVDC transmission line from Texas County, Oklahoma to Tulsa, Oklahoma
  • Southline, which will construct a 108-mile transmission line between Hidalgo County, New Mexico, and Las Cruces, New Mexico. The DOE previously supported a 175-mile line from Hidalgo County, New Mexico, to Pima County, Arizona, in Southline Phase 1 on the first round of the Transmission Facilitation Program.

This month's funding completes the $2.5 billion in awards from the Transmission Facilitation Program which is administered through the Building a Better Grid Initiative that launched in January 2022. Its mission has been to develop nationally significant transmission lines, increase resilience by connecting regions of the country and improve access to clean energy sources, according to the DOE.

Earlier this year, ERCOT, which manages 90 percent of Texas’ power supply, forecasted a major spike in demand for electricity over the next five to seven years

CenterPoint has committed to "the largest investment in Greater Houston infrastructure in the company's nearly 160-year history." Photo via Getty Images

CenterPoint Energy announces $5B expanded resiliency plan

doubling down

CenterPoint Energy disclosed that it's completed its core resiliency actions first phase of its Greater Houston Resiliency Initiative. The company also reports that it's outlined extra upcoming efforts.

Following the unprecedented outages of Hurricane Beryl, CenterPoint outlined its GHRI in August. As of last week, the first phase, which included more than 40 critical actions in total to strengthen the electric grid, has been completed ahead of schedule.

The company also announced a second phase of GHRI and approximately $5 billion in resiliency investment from 2026 to 2028, a figure that's around twice as much as initially promised.

"We have heard the call to action from our customers and elected officials, and we are responding with bold actions," says Jason Wells, CenterPoint president and CEO, in a statement. "Our defining goal, going forward, is this: to build the most resilient coastal grid in the country that can better withstand the extreme weather of the future. To achieve this ambition, we will undertake a historic level of resiliency actions and investment, because this is what the people of the Greater Houston area expect and deserve."

According to CenterPoint, the second phase will include system hardening, strategic undergrounding, self-healing grid technology, and further enhancements to the company's outage tracker.

CenterPoint outlined its recently completed efforts, including installing over 300 automation devices and more than 1,000 stronger poles, as well as removing hazardous vegetation from more than 2,000 miles of power lines. Next up, CenterPoint says it's near-term actions will include further grid strengthening, public communication improvements, and enhancements to local, community, and emergency partnerships. The details of this phase, which will take place between September 1 to June 1, will be released by September 30.

In the company's longer-term action plan, CenterPoint commits to $5 billion in upgrades from 2026 to 2028 — "the largest investment in Greater Houston infrastructure in the company's nearly 160-year history."

"The mission of this longer-term plan of action is to build the most resilient coastal grid in the country by investing in a smarter grid of the future that can better withstand a broad spectrum of risks," reads the statement. "The proposal, and the entire scope of these actions will be outlined in a new system resiliency plan that is expected to be filed with the Public Utility Commission of Texas on or before January 31, 2025."

CenterPoint reports that lawmakers have received this information directly, and that the plan will be shaped by feedback from its customers, experts, and stakeholders, including elected officials and local agencies.

Houston-based renewable project developer has opened four solar parks in the south recently. Photo via edpr.com

Houston renewables developer powers up projects in southern region of the US

shine bright

Houston-based renewable energy developer EDP Renewables is making big moves in the Southern United States with its latest solar park projects.

EDPR celebrated the inauguration of Pearl River Solar Park in Scott County, Mississippi, that has an installed capacity of 210 megawatt peak, which produces enough power to meet the energy needs of more than 27,000 average Mississippi homes.

The project consists of 400,000 monofacial and bifacial tracking photovoltaic panels that will contribute clean, cost-competitive power to the state’s electric grid. Pearl River will provide more than $50 million in payments to local governments throughout its operating life, benefiting schools, health care facilities, fire departments, and other county services, as well as create hundreds of jobs, according to EDPR.

"We are thrilled to finally see Pearl River begin operations,” Sandhya Ganapathy, CEO of EDPR North America, says in a news release. “Solar power is a win-win in Mississippi, as it accelerates the deployment of clean energy to the grid and contributes to the state’s decarbonization objectives. The project will immediately go to work to provide Mississippi with a readily available clean energy resource.”

A second project is currently under development for Ragsdale Solar Park in Canton, Mississippi. The project is expected to provide over $36 million to local governments and $15 million to landowners over the course of its lifespan once it becomes operational.

Ragsdale is expected to generate 100 MW of energy, which is equivalent to the consumption of 15,000 average Mississippi homes. According to the company, once operational, it will create over 100 construction jobs and will create three permanent jobs.

In May, EDPR opened its Crooked Lake Solar Park near Blytheville in Mississippi County, Arkansas, which is a 175-megawatt project. The company says it will generate enough energy to power the equivalent of 30,000 Arkansas homes each year.

In April, EDPR completed Misenheimer Solar Park in Stanly County, North Carolina. The solar project has an installed capacity of 74 megawatts, which is one of the largest in the state. Misenheimer Solar Park will generate enough energy annually to power the equivalent of more than 12,000 North Carolina homes while providing economic and environmental benefits, according to EDPR.

Combining batteries with green energy is a fast-growing climate solution. Photo via Getty Images

Batteries and green energies like wind and solar combine for major climate solution across Texas, U.S.

team work

In the Arizona desert, a Danish company is building a massive solar farm that includes batteries that charge when the sun is shining and supply energy back to the electric grid when it's not.

Combining batteries with green energy is a fast-growing climate solution.

“Solar farms only produce when the sun shines, and the turbines only produce when the wind blows,” said Ørsted CEO Mads Nipper. “For us to maximize the availability of the green power, 24-7, we have to store some of it too.”

The United States is rapidly adding batteries, mostly lithium-ion type, to store energy at large scale. Increasingly, these are getting paired with solar and wind projects, like in Arizona. The agencies that run electric grids, utility companies and developers of renewable energies say combining technologies is essential for a green energy future.

Batteries allow renewables to replace fossil fuels like oil, gas and coal, while keeping a steady flow of power when sources like wind and solar are not producing. For example, when people are sleeping and thus using less electricity, the energy produced from wind blowing through the night can be stored in batteries — and used when demand is high during the day.

Juan Mendez, a resident of Tempe, Arizona, gets power from local utility Salt River Project, which is collaborating with Ørsted on the Eleven Mile Solar Center. As a state senator, Mendez pushed SRP to move to renewable energies.

He thinks the power company is still investing too much in gas and coal plants, including a major expansion planned for a natural gas plant in Coolidge, Arizona, near the solar center.

“This solar-plus-storage is a good step, but SRP needs to do more to provide clean energy and clean up our air and help address climate change," Mendez said.

The utility said it’s adding more renewables to its energy mix and recently pledged to zero out its emissions by 2050.

The U.S. has the second most electrical storage in the world, after China. In 2023, the U.S. added an estimated 7.5 gigawatts — 62% more than in 2022, according to the BloombergNEF and the Business Council for Sustainable Energy factbook. That amount can power 750,000 homes for a day and brings the total amount of installed capacity nationwide to nearly enough for 2 million homes for one day, according to BloombergNEF.

In the U.S., California leads in energy storage as it aggressively cuts greenhouse gas emissions. It has twice as much as any other state. Residential, commercial and utility-scale battery installations increased by 757% there over just four years, meaning there's now enough to power 6.6 million homes for up to four hours, according to the California Energy Commission.

That's partly because in 2013, the California Public Utilities Commission told utilities to buy energy storage with a target to be met by 2020. Since then, power companies have continued to add more batteries to help the state meet clean electricity requirements.

Southern California Edison is one utility adding thousands of hours of energy storage. It is putting in solar-plus-batteries to replace some power plants that burn natural gas and would typically supply electricity in the evening.

“If it’s just clean and not reliable, you really don’t have anything,” said William Walsh, vice president for energy procurement and management. “We need both.”

In California, batteries proved their value in September 2022, as the West was experiencing a long heat wave that sent temperatures into the triple digits. Electricity demand reached the highest the state had ever seen on Sept. 6, 2022, as people cranked up air conditioners.

Walsh credits the batteries added to the grid between 2020 and 2022 with helping to avoid blackouts. Two years earlier, there were rolling electricity outages in California during a similar extreme heat wave.

Texas has the second-most battery storage after California. Last month, Schneider Electric announced it's teaming up with energy company ENGIE North America on solar and battery systems in Texas to get closer to the French multinational’s 100% renewable energy goal in the U.S. and Canada. Before the Inflation Reduction Act, a major climate law passed in 2022, the deal and the necessary $80 million investment would not have been possible, said Hans Royal, Schneider Electric's senior director for renewable energy and carbon advisory.

Royal is advising other global Fortune 500 companies it works with to get into the market.

“The industry needs that, the grid needs it," said Royal.

Back in Arizona, Ørsted’s Eleven Mile Solar Center covers 2,000 acres in rural Pinal County. It has 857,000 solar panels and more than 2,000 cubes that look like large shipping containers but contain battery modules. Ørsted also has large solar and storage projects in Texas and Alabama, and in Europe.

When the Arizona facility opens this summer, most power from the solar farm will go to Facebook owner Meta's data center in Mesa. The solar power not needed by Meta, in addition to the power stored in the batteries, will go to the local utility's customers. The new batteries can ensure power to roughly 65,000 homes during peak hours of demand.

“What I think is exciting is just how rapidly this market is moving," said Yayoi Sekine, head of energy storage at BloombergNEF. “There's so much pressure for the U.S. and different regions to decarbonize, and storage is one of the major technologies to enable that. There's a lot of momentum."

Rising temps could result in rolling brownouts this summer–unless we work together to reduce the strain on the electric grid. Photo via Shutterstock

NERC warns of summer energy shortfalls–what you can do now

THINGS ARE HEATING UP

The North American Electric Reliability Council (NERC) issued a warning with the 2023 Summer Reliability Assessment yesterday – energy shortages could be coming this summer for two-thirds of North America if temperatures spike higher than normal.

“Increased, rapid deployment of wind, solar and batteries have made a positive impact,” Mark Olson, NERC’s manager of reliability assessments says in the release. “However, generator retirements continue to increase the risks associated with extreme summer temperatures, which factors into potential supply shortages in the western two-thirds of North America if summer temperatures spike.”

For Texans, the combined risk of drought and higher-than-normal temperatures could stress ERCOT system resources, especially in the case of reduced wind. But before there’s a mad rush on generators, keep in mind, electricity consumers can take simple actions to minimize the possibility of widespread shortfalls.

Electricity demand begins rising daily around 2 P.M. in the summer and peaks in the final hours of daylight. These hours are generally not only the warmest hours of the day but also the busiest. People return from work to their homes, crank down the air conditioner, turn on TVs, run a load of wash, and prepare meals using multiple electric-powered appliances.

If everyone takes one or two small steps to avoid unnecessary stress on the grid in the hours after coming home from work, we can prevent energy shortfalls. Modify routines now to get into the habit of running the dishwasher overnight, using the washer and dryer before noon or after 8 pm and pulling the shades down in the bright afternoon hours of the day.

Try to delay powering up devices – including EVs – until after dark. Turn off and unplug items to avoid sapping electricity when items are not in use. And if you can bear it, nudge that thermostat up a couple of degrees.

Energy sustainability demands consistent collaboration and coordination from every consumer of energy. Let’s get in the habit of acting neighborly now with conservative electricity practices before we start seeing temperatures–of both the literal and figurative kind–flare.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

How Planckton Data is building the sustainability label every industry will need

now streaming

There’s a reason “carbon footprint” became a buzzword. It sounds like something we should know. Something we should measure. Something that should be printed next to the calorie count on a label.

But unlike calories, a carbon footprint isn’t universal, standardized, or easy to calculate. In fact, for most companies—especially in energy and heavy industry—it’s still a black box.

That’s the problem Planckton Data is solving.

On this episode of the Energy Tech Startups Podcast, Planckton Data co-founders Robin Goswami and Sandeep Roy sit down to explain how they’re turning complex, inconsistent, and often incomplete emissions data into usable insight. Not for PR. Not for green washing. For real operational and regulatory decisions.

And they’re doing it in a way that turns sustainability from a compliance burden into a competitive advantage.

From calories to carbon: The label analogy that actually works

If you’ve ever picked up two snack bars and compared their calorie counts, you’ve made a decision based on transparency. Robin and Sandeep want that same kind of clarity for industrial products.

Whether it’s a shampoo bottle, a plastic feedstock, or a specialty chemical—there’s now consumer and regulatory pressure to know exactly how sustainable a product is. And to report it.

But that’s where the simplicity ends.

Because unlike food labels, carbon labels can’t be standardized across a single factory. They depend on where and how a product was made, what inputs were used, how far it traveled, and what method was used to calculate the data.

Even two otherwise identical chemicals—one sourced from a refinery in Texas and the other in Europe—can carry very different carbon footprints, depending on logistics, local emission factors, and energy sources.

Planckton’s solution is built to handle exactly this level of complexity.

AI that doesn’t just analyze

For most companies, supply chain emissions data is scattered, outdated, and full of gaps.

That’s where Planckton’s use of AI becomes transformative.

  • It standardizes data from multiple suppliers, geographies, and formats.
  • It uses probabilistic models to fill in the blanks when suppliers don’t provide details.
  • It applies industry-specific product category rules (PCRs) and aligns them with evolving global frameworks like ISO standards and GHG Protocol.
  • It helps companies model decarbonization pathways, not just calculate baselines.

This isn’t generative AI for show. It’s applied machine learning with a purpose: helping large industrial players move from reporting to real action.

And it’s not a side tool. For many of Planckton’s clients, it’s becoming the foundation of their sustainability strategy.

From boardrooms to smokestacks: Where the pressure is coming from

Planckton isn’t just chasing early adopters. They’re helping midstream and upstream industrial suppliers respond to pressure coming from two directions:

  1. Downstream consumer brands—especially in cosmetics, retail, and CPG—are demanding footprint data from every input supplier.
  2. Upstream regulations—especially in Europe—are introducing reporting requirements, carbon taxes, and supply chain disclosure laws.

The team gave a real-world example: a shampoo brand wants to differentiate based on lower emissions. That pressure flows up the value chain to the chemical suppliers. Who, in turn, must track data back to their own suppliers.

It’s a game of carbon traceability—and Planckton helps make it possible.

Why Planckton focused on chemicals first

With backgrounds at Infosys and McKinsey, Robin and Sandeep know how to navigate large-scale digital transformations. They also know that industry specificity matters—especially in sustainability.

So they chose to focus first on the chemicals sector—a space where:

  • Supply chains are complex and often opaque.
  • Product formulations are sensitive.
  • And pressure from cosmetics, packaging, and consumer brands is pushing for measurable, auditable impact data.

It’s a wedge into other verticals like energy, plastics, fertilizers, and industrial manufacturing—but one that’s already showing results.

Carbon accounting needs a financial system

What makes this conversation unique isn’t just the product. It’s the co-founders’ view of the ecosystem.

They see a world where sustainability reporting becomes as robust as financial reporting. Where every company knows its Scope 1, 2, and 3 emissions the way it knows revenue, gross margin, and EBITDA.

But that world doesn’t exist yet. The data infrastructure isn’t there. The standards are still in flux. And the tooling—until recently—was clunky, manual, and impossible to scale.

Planckton is building that infrastructure—starting with the industries that need it most.

Houston as a launchpad (not just a legacy hub)

Though Planckton has global ambitions, its roots in Houston matter.

The city’s legacy in energy and chemicals gives it a unique edge in understanding real-world industrial challenges. And the growing ecosystem around energy transition—investors, incubators, and founders—is helping companies like Planckton move fast.

“We thought we’d have to move to San Francisco,” Robin shares. “But the resources we needed were already here—just waiting to be activated.”

The future of sustainability is measurable—and monetizable

The takeaway from this episode is clear: measuring your carbon footprint isn’t just good PR—it’s increasingly tied to market access, regulatory approval, and bottom-line efficiency.

And the companies that embrace this shift now—using platforms like Planckton—won’t just stay compliant. They’ll gain a competitive edge.

Listen to the full conversation with Planckton Data on the Energy Tech Startups Podcast:

Hosted by Jason Ethier and Nada Ahmed, the Digital Wildcatters’ podcast, Energy Tech Startups, delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.


Gold H2 harvests clean hydrogen from depleted California reservoirs in first field trial

breakthrough trial

Houston climatech company Gold H2 completed its first field trial that demonstrates subsurface bio-stimulated hydrogen production, which leverages microbiology and existing infrastructure to produce clean hydrogen.

Gold H2 is a spinoff of another Houston biotech company, Cemvita.

“When we compare our tech to the rest of the stack, I think we blow the competition out of the water," Prabhdeep Singh Sekhon, CEO of Gold H2 Sekhon previously told Energy Capital.

The project represented the first-of-its-kind application of Gold H2’s proprietary biotechnology, which generates hydrogen from depleted oil reservoirs, eliminating the need for new drilling, electrolysis or energy-intensive surface facilities. The Woodlands-based ChampionX LLC served as the oilfield services provider, and the trial was conducted in an oilfield in California’s San Joaquin Basin.

According to the company, Gold H2’s technology could yield up to 250 billion kilograms of low-carbon hydrogen, which is estimated to provide enough clean power to Los Angeles for over 50 years and avoid roughly 1 billion metric tons of CO2 equivalent.

“This field trial is tangible proof. We’ve taken a climate liability and turned it into a scalable, low-cost hydrogen solution,” Sekhon said in a news release. “It’s a new blueprint for decarbonization, built for speed, affordability, and global impact.”

Highlights of the trial include:

  • First-ever demonstration of biologically stimulated hydrogen generation at commercial field scale with unprecedented results of 40 percent H2 in the gas stream.
  • Demonstrated how end-of-life oilfield liabilities can be repurposed into hydrogen-producing assets.
  • The trial achieved 400,000 ppm of hydrogen in produced gases, which, according to the company,y is an “unprecedented concentration for a huff-and-puff style operation and a strong indicator of just how robust the process can perform under real-world conditions.”
  • The field trial marked readiness for commercial deployment with targeted hydrogen production costs below $0.50/kg.

“This breakthrough isn’t just a step forward, it’s a leap toward climate impact at scale,” Jillian Evanko, CEO and president at Chart Industries Inc., Gold H2 investor and advisor, added in the release. “By turning depleted oil fields into clean hydrogen generators, Gold H2 has provided a roadmap to produce low-cost, low-carbon energy using the very infrastructure that powered the last century. This changes the game for how the world can decarbonize heavy industry, power grids, and economies, faster and more affordably than we ever thought possible.”

Rice University spinout lands $500K NSF grant to boost chip sustainability

cooler computing

HEXAspec, a spinout from Rice University's Liu Idea Lab for Innovation and Entrepreneurship, was recently awarded a $500,000 National Science Foundation Partnership for Innovation grant.

The team says it will use the funding to continue enhancing semiconductor chips’ thermal conductivity to boost computing power. According to a release from Rice, HEXAspec has developed breakthrough inorganic fillers that allow graphic processing units (GPUs) to use less water and electricity and generate less heat.

The technology has major implications for the future of computing with AI sustainably.

“With the huge scale of investment in new computing infrastructure, the problem of managing the heat produced by these GPUs and semiconductors has grown exponentially. We’re excited to use this award to further our material to meet the needs of existing and emerging industry partners and unlock a new era of computing,” HEXAspec co-founder Tianshu Zhai said in the release.

HEXAspec was founded by Zhai and Chen-Yang Lin, who both participated in the Rice Innovation Fellows program. A third co-founder, Jing Zhang, also worked as a postdoctoral researcher and a research scientist at Rice, according to HEXAspec's website.

The HEXASpec team won the Liu Idea Lab for Innovation and Entrepreneurship's H. Albert Napier Rice Launch Challenge in 2024. More recently, it also won this year's Energy Venture Day and Pitch Competition during CERAWeek in the TEX-E student track, taking home $25,000.

"The grant from the NSF is a game-changer, accelerating the path to market for this transformative technology," Kyle Judah, executive director of Lilie, added in the release.

---

This article originally ran on InnovationMap.