up and running

Houston geothermal company's Google facility in Nevada goes online

Fervo Energy's Project Red with Google is officially operational. Photo via blog.google

Google is on a mission to run all of its data centers and office campuses on constant carbon-free energy by 2030, and the tech giant is one step closer to that goal.

Last week, Google announced that its 24/7 carbon-free energy, or CFE, in Nevada to power its local data center in the state is officially operational. The facility is powered by Houston-based Fervo Energy's geothermal technology, a project — called Project Red — that began in 2021 and celebrated its successful pilot this summer.

"When we began our partnership with Fervo, we knew that a first-of-a-kind project like this would require a wide range of technical and operational innovations," Michael Terrell, senior director of energy and climate at Google, writes in a blog post about the partnership.

Fervo relies on tried and true drilling techniques from the oil and gas industry, accessing heat energy that previously has been elusive to traditional geothermal methods, Terrell continues. Fervo dug two horizontal wells at the Nevada plant, as well as installed fiber-optic cables to capture data that tracks performance and other key information.

"The result is a geothermal plant that can produce round-the-clock CFE using less land than other clean energy sources and drawing on skills, knowledge, and supply chains that exist in other industries," Terrell says. "From our early commitment to support the project’s development to its successful completion, we’ve worked closely with Fervo to overcome obstacles and prove that this technology can work."

Google also recently announced a partnership with Project InnerSpace, a nonprofit focused on global geothermal energy development.

Fervo is working on another nearby project, the company announced in September. The 400-milliwatt geothermal energy project in Cape Station, Utah, will start delivering carbon-free power to the grid in 2026, with full-scale production beginning in 2028.

The project, in southwest Utah, is about 240 miles southwest of Salt Lake City and about 240 miles northeast of Las Vegas. Cape Station is adjacent to the U.S. Department of Energy’s Frontier Observatory for Research in Geothermal Energy (FORGE) and near the Blundell geothermal power plant.

Trending News

A View From HETI

Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images.

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape.

The team, led by Yan Yao, the Hugh Roy and Lillie Cranz Cullen Distinguished Professor of Electrical and Computer Engineering at UH, recently published its findings in the journal Nature Communications.

The work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

“This research solves a long-standing mystery about why solid-state batteries sometimes fail,” Yao, corresponding author of the study, said in a news release. “This discovery allows solid-state batteries to operate under lower pressure, which can reduce the need for bulky external casing and improve overall safety.”

A solid-state battery replaces liquid electrolytes found in conventional lithium-ion cells with a solid separator, according to Car and Driver. They also boast faster recharging capabilities, better safety and higher energy density.

However, when it comes to EVs, solid-state batteries are not ideal since they require high external stack pressure to stay intact while operating.

Yao’s team learned that tiny empty spaces, or voids, form within the solid-state batteries and merge into a large gap, which causes them to fail. The team found that adding small amounts of alloying elements, like magnesium, can help close the voids and help the battery continue to function. The team captured it in real-time with high-resolution videos that showed what happens inside a battery while it’s working under a scanning electron microscope.

“By carefully adjusting the battery’s chemistry, we can significantly lower the pressure needed to keep it stable,” Lihong Zhao, the first author of this work, a former postdoctoral researcher in Yao’s lab and now an assistant professor of electrical and computer engineering at UH, said in the release. “This breakthrough brings solid-state batteries much closer to being ready for real-world EV applications.”

The team says it plans to build on the alloy concept and explore other metals that could improve battery performance in the future.

“It’s about making future energy storage more reliable for everyone,” Zhao added.

The research was supported by the U.S. Department of Energy’s Battery 500 Consortium under the Vehicle Technologies Program. Other contributors were Min Feng from Brown; Chaoshan Wu, Liqun Guo, Zhaoyang Chen, Samprash Risal and Zheng Fan from UH; and Qing Ai and Jun Lou from Rice.

Trending News