Sun Day Houston will be held this Sunday, Sept. 21. Photo via Upslash.

Local organizations will celebrate solar, wind and renewable energy this Sunday, Sept. 21, during Sun Day Houston.

Timed with the autumn equinox, the inaugural event will bring together speakers, exhibits, workshops and hands-on activities that promote the adoption of clean power sources outside of Christ the King Lutheran Church at 2353 Rice Blvd., near Rice University. It will take place from 2-4:30 p.m.

Featured speakers include:

  • Daniel Cohan, professor of civil and environmental engineering at Rice, who will speak on the science of renewable energy and its growing role in ERCOT and the national U.S. energy grid
  • Andrea Oyuela, manager of the Harris County Solar for All program, who will speak on Harris County’s efforts to expand solar energy access to underserved communities and the county's leadership role in the Texas Solar for All Coalition

Attendees will also be able to participate in mobile solar and home solar battery displays, an electric vehicle show-and-tell, and a rain barrel workshop. Other workshops include the Tips and Tricks for Going Solar Workshop and the Welcoming the Energy Transition Workshop.

Exhibits will be hosted by:

  • Harris County Sustainability Division
  • Solar United Neighbors
  • Environment Texas
  • Public Citizen
  • Houston Chapter, Citizens Climate Lobby
  • Texas Campaign for the Environment
  • Houston Electric Vehicle Association
  • Houston Climate Boulder Project
  • Turtle Island Restoration Network
  • Climate Conversation Brazoria County
  • Sunrise Movement
  • Rice Wildlife Conservation Corps

Sun Day Houston is part of hundreds of Sun Day events worldwide. TH!RD ACT, a national nonprofit founded by environmentalist Bill McKibben, is serving as the primary sponsor. It is co-sponsored by 22 Gulf Coast environmental organizations, including Sierra Club of Houston, Harris County Sustainability Division, the Green Building Council, and many others. Find more information here.

A new report shows that Texas has about 16 public charging stations per 1,000 EVs. Photo by Kindel Media/Pexels

Texas among top states for EV charging access, report shows

by the numbers

A new study from FinanceBuzz reports that Texas has the fifth most public electric vehicle charging stations among states in the U.S.

In its Electric Vehicle (EV) Statistics [2025]: Trends in Sales, Savings, and More report, FinanceBuzz, a personal finance and investment adviser, compiled electric vehicle data to find sales trends, adoption rates, charging infrastructure, costs, savings and more.

Texas has a total of 3,709 public EV charging stations, which equals about 16 stations per 1,000 EVs, according to the report. The remaining top five included:

  • No. 1 California with 17,122 EV charging stations
  • No. 2 New York with 4,814 EV charging stations
  • No.3 Massachusetts with 3,738 EV charging stations
  • No. 4 Florida with 3,715 EV charging stations

Los Angeles had the most public charging stations at 1,609 among U.S. cities. Austin was Texas’s top city with 656 stations.

The study also looked at how much Americans are spending on transportation, and found that the average American using a gas vehicle spends $1,865 annually on fuel. FinanceBuzz found that electric vehicle owners would pay 65 percent less on energy costs. Calculations were based on driving 14,489 miles annually, which measures to 37.9 miles per day. The full report sourced data from the International Energy Agency, the U.S. Department of Energy, the U.S. Department of Transportation, AAA, the U.S. Energy Information Administration and other organizations.

The report said Americans purchased over 1.5 million EVs in 2024, which equals approximately 10 percent of all new light-duty vehicles sold, citing information from the International Council on Clean Transportation.

While Tesla remains the most popular make, 24 new EV models were launched in 2024 by other companies, which represents a 15 percent increase from the previous year.

Other trends in the report included:

  • The U.S. now has more than 64,000 public charging stations and over 168,000 charging ports, which is up from fewer than 1,000 stations in 2010.
  • An average EV owner will spend about $654 per year on electricity, compared to $1,865 for a gas-powered vehicle. The savings equate to about $1,211 per year.
  • In 2024, U.S. EV sales surpassed 1.5 million, but the pace slowed compared to the previous year, with a 10 percent increase versus 40 percent in 2023.
  • Insuring an EV can be more costly because parts are harder to come by, making repairs and replacements more expensive.
  • In the second quarter of 2024, nearly half of new EVs were leased, which is a 28 percentage point increase since 2021.
Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images.

Houston team’s discovery brings solid-state batteries closer to EV use

a better battery

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape.

The team, led by Yan Yao, the Hugh Roy and Lillie Cranz Cullen Distinguished Professor of Electrical and Computer Engineering at UH, recently published its findings in the journal Nature Communications.

The work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

“This research solves a long-standing mystery about why solid-state batteries sometimes fail,” Yao, corresponding author of the study, said in a news release. “This discovery allows solid-state batteries to operate under lower pressure, which can reduce the need for bulky external casing and improve overall safety.”

A solid-state battery replaces liquid electrolytes found in conventional lithium-ion cells with a solid separator, according to Car and Driver. They also boast faster recharging capabilities, better safety and higher energy density.

However, when it comes to EVs, solid-state batteries are not ideal since they require high external stack pressure to stay intact while operating.

Yao’s team learned that tiny empty spaces, or voids, form within the solid-state batteries and merge into a large gap, which causes them to fail. The team found that adding small amounts of alloying elements, like magnesium, can help close the voids and help the battery continue to function. The team captured it in real-time with high-resolution videos that showed what happens inside a battery while it’s working under a scanning electron microscope.

“By carefully adjusting the battery’s chemistry, we can significantly lower the pressure needed to keep it stable,” Lihong Zhao, the first author of this work, a former postdoctoral researcher in Yao’s lab and now an assistant professor of electrical and computer engineering at UH, said in the release. “This breakthrough brings solid-state batteries much closer to being ready for real-world EV applications.”

The team says it plans to build on the alloy concept and explore other metals that could improve battery performance in the future.

“It’s about making future energy storage more reliable for everyone,” Zhao added.

The research was supported by the U.S. Department of Energy’s Battery 500 Consortium under the Vehicle Technologies Program. Other contributors were Min Feng from Brown; Chaoshan Wu, Liqun Guo, Zhaoyang Chen, Samprash Risal and Zheng Fan from UH; and Qing Ai and Jun Lou from Rice.

Zeta Energy's batteries are targeted to power Stellantis electric vehicles by 2030. Image via Zeta Energy

Houston company to develop game-changing lithium-sulfur EV batteries for automaker

team work

Houston-based Zeta Energy Corp. has teamed up with an automaker to develop new battery technology.

Zeta Energy and Stellantis N.V. announced a joint development deal to advance battery cell technology for electric vehicle applications that will develop lithium-sulfur EV batteries with gravimetric energy density that can achieve a volumetric energy density comparable to today’s lithium-ion technology. The batteries are targeted to power Stellantis electric vehicles by 2030.

“The combination of Zeta Energy’s lithium-sulfur battery technology with Stellantis’ unrivaled expertise in innovation, global manufacturing and distribution can dramatically improve the performance and cost profile of electric vehicles while increasing the supply chain resiliency for batteries and EVs,” Tom Pilette, CEO of Zeta Energy, says in a news release.

The batteries will be produced using waste materials and methane that boasts lower CO2 emissions than any existing battery technology. Zeta Energy battery technology is intended to be manufacturable within existing gigafactory technology and would leverage an entire domestic supply chain in Europe or North America.

The technology can lead to a significantly lighter battery pack with the same usable energy as contemporary lithium-ion batteries. The companies believe this will enable greater range, improved handling and enhanced performance. The technology has the potential to improve fast-charging speed by up to 50 percent, which can make EV ownership easier.

Lithium-sulfur batteries are expected to cost less than half the price per kilowatt of current lithium-ion batteries according to a news release. Zeta has more than 60 patents on its proprietary lithium-sulfur anode and cathode technologies.

Lighter and more compact EV batteries have become an important design goal for vehicle designers and manufacturers. This objective is similar to what General Motors is doing with prismatic cell technology with LG Energy Solution.

“Our collaboration with Zeta Energy is another step in helping advance our electrification strategy as we work to deliver clean, safe and affordable vehicles,” Ned Curic, Stellantis chief engineering and technology officer, says in the release. “Groundbreaking battery technologies like lithium-sulfur can support Stellantis’ commitment to carbon neutrality by 2038 while ensuring our customers enjoy optimal range, performance and affordability.”

Last year, Zeta Energy announced that it was selected to receive $4 million in federal funding for the development of efficient electric vehicle batteries from the U.S. Department of Energy's ARPA-E Electric Vehicles for American Low-Carbon Living, or EVs4ALL, program.

The strong performance changed the trajectory of the year for the Austin, Texas-based company, which had seen sales and profits decline in the first two quarters. Photo courtesy of Tesla

Tesla posts surprise $2.17B third-quarter profit, up from a year ago

by the numbers

Tesla’s third-quarter net income rose 17.3 percent compared with a year ago on stronger electric vehicle sales, and an optimistic CEO Elon Musk predicted 20 percent to 30 percent sales growth next year.

The strong performance changed the trajectory of the year for the Austin, Texas-based company, which had seen sales and profits decline in the first two quarters.

In its letter to investors, Tesla predicted slight growth in vehicle deliveries this year, better than the 1.8 million delivered worldwide in 2023.

Tesla said Wednesday that it made $2.17 billion from July through September, more than the $1.85 billion profit it posted in the same period of 2023.

The earnings came despite price cuts and low-interest financing that helped boost sales of the company’s aging vehicle lineup during the quarter. It was Tesla’s first year-over-year quarterly profit increase of 2024, a year plagued by falling sales and prices.

Revenue in the quarter rose 7.8 percent to $25.18 billion, falling short of Wall Street analysts who estimated it at $25.47 billion, according to FactSet. Tesla made an adjusted 72 cents per share, soundly beating analyst expectations of 59 cents.

Shares in Tesla Inc. soared nearly 12 percent in trading after Wednesday’s closing bell.

On a conference call with analysts, Musk said the profit increase came despite a challenging environment for auto sales with still-high loan interest rates. “I think if you look at EV companies worldwide, to the best of my knowledge, no EV company is even profitable,” he said.

Musk qualified his prediction that Tesla would post 2025 vehicle sales growth of 20 percent to 30 percent by saying it could be changed by “negative external events.”

Earlier this month Tesla said it sold 462,890 vehicles from July through September, up 6.4 percent from a year ago. The sales numbers were better than analysts had expected.

The letter said that Tesla is on track to start production of new vehicles, including more affordable models, in the first half of next year, something investors had been looking for. The new vehicles will use parts from its current models and will be made on the same assembly lines as Tesla’s current model lineup, the letter said.

The new vehicles were not identified and the price was nebulous. Musk has said in the past the company is working on a car that will cost about $25,000, but said Wednesday that a new affordable vehicle would cost under $30,000 including government tax incentives.

Earlier this month, the company showed off a purpose-built two-seat robotaxi called “Cybercab” at a glitzy event at a Hollywood movie studio. Musk said it would be in production before 2027 and cost around $25,000.

By using parts from existing models and the current manufacturing system, Tesla won’t reach cost reductions that it previously expected using a new manufacturing setup.

Tesla said it reduced the cost of goods per vehicle to its lowest level yet, about $35,100.

The company’s widely watched gross profit margin, the percentage of revenue it gets to keep after expenses, rose to 19.8 percent, the highest in a year, but still smaller than the peak of 29.1 percent in the first quarter of 2022.

During the quarter, Tesla’s revenue from regulatory credits purchased by other automakers who can’t meet government emissions targets hit $739 million, the second highest quarter in company history.

Musk said Tesla's “Full Self-Driving” system is improving and would drive more safely than humans in the second quarter of next year. Despite the name, Teslas using “Full Self-Driving” cannot drive themselves, and human drivers must be ready to intervene at all times.

The company, he said, is offering an autonomous ride-hailing service to employees in the San Francisco Bay Area, but it currently has human safety drivers. It expects to start a robotaxi service for the public in California and Texas next year, he said.

Musk also conceded that it may not be possible to reach autonomous driving safety levels with older editions of “Full Self-Driving” hardware. If it can't do that, Tesla will upgrade computers in the older cars for free, he said.

The self-driving claims come just five days after U.S. safety regulators opened an investigation into the system's cameras to see in low-visibility conditions such as sun glare, fog and airborne dust. The probe raised doubts about whether the system will be ready to drive on its own next year.

The National Highway Traffic Safety Administration said in documents posted Friday that it opened the probe of 2.4 million Teslas after the company reported four crashes in low visibility conditions. In one, a woman who stopped to help after a crash on an Arizona freeway was struck and killed by a Tesla.

Investigators will look into the ability of “Full Self-Driving” to “detect and respond appropriately to reduced roadway visibility conditions."

Edward Jones analyst Jeff Windau said the earnings report and conference call showed that Tesla is making money on software, a business with high profit margins.

Still, he has a “hold” rating on the stock as the company moves toward robotics and autonomous vehicles. “They’ve got a lot of challenging goals out there,” he said.

Soon, the country will have IONNA's "Rechargery" locations thanks to the support of Texas-based Toyota and other automakers. Rendering courtesy of IONNA

Texas automaker invests in first-of-its-kind EV charging station initiative

plugging in

A charging network founded by eight of the world’s top automakers have announced that they have broken ground on their first electric vehicle charging station.

IONNA will work to transform a historic district gas station into a new "Rechargery" in North Carolina. The initiative is backed by Plano-based Toyota, along with BMW, General Motors, Honda, Hyundai, Mercedes-Benz, Kia, and Stellantis.

With plans to open locations across the country, the station will provide 10 covered parking bays and will be accessible to both CCS and NAC chargers. The charging ports will be capable of up to 400 kilowatts and 800+ Volts. The site will also include an indoor driver’s lounge, coffee service, food/beverage, restrooms, and WIFI.

“We are excited to announce our support of IONNA to deploy DC fast chargers throughout the U.S. and Canada,” Ted Ogawa, president and CEO of Toyota Motor North America, says in a news release. “We believe this will not only promote the adoption of BEVs and increase customer confidence in the technology, but it will provide our Toyota and Lexus customers with access to IONNA’s rapidly growing charging network in North America.”

IONNA will “enable urban and long-distance EV mobility for all with over 30,000 ultra-fast-and-reliable charging points by 2030” according to the company.

IONNA also announced Jackie Slope as the Chief Technology Officer. Slope previously worked with customer experiences at Crypto.com Arena and Madison Square Garden.

“Having spent my career raising the bar around the customer experience I am excited to find ways to innovate and elevate the charging experience by serving the customer above all else in this new and exciting industry,” Slope said in a news release.

While the North Carolina location is the first of its kind, IONNA plans to expand its Rechargery stations around North America soon.

In other EV news, Hyundai Motor and Kia launched a project on Sept. 25 to develop lithium iron phosphate (LFP) battery cathode material. Hyundai Steel and cathode material market leader EcoPro BM will aim to synthesize materials directly without creating a precursor for LFP battery cathode material production

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

6 major acquisitions that fueled the Houston energy sector in 2025

2025 In Review

Editor's note: As 2025 comes to a close, we're revisiting the biggest headlines and major milestones of the energy transition sector this year. Here are six major acquisitions that fueled the Houston energy industry in 2025:

Houston-based Calpine Corp. to be acquired in clean energy megadeal

Houston's Calpine Corp. will be acquired by Baltimore-based nuclear power company Constellation Energy Corp. Photo via DOE

In January 2025, Baltimore-based nuclear power company Constellation Energy Corp. and Houston-based Calpine Corp. entered into an agreement where Constellation would acquire Calpine in a cash and stock transaction with an overall net purchase price of $26.6 billion. The deal received final regulatory clearance this month.

Investment giant to acquire TXNM Energy for $11.5 billion

Blackstone Infrastructure, an affiliate of Blackstone Inc., will acquire a major Texas electricity provider. Photo via Shutterstock

In May 2025, Blackstone Infrastructure, an investment giant with $600 million in assets under management, agreed to buy publicly traded TXNM Energy in a debt-and-stock deal valued at $11.5 billion. The deal recently cleared a major regulatory hurdle, but still must be approved by the Public Utility Commission of Texas.

Houston's Rhythm Energy expands nationally with clean power acquisition

PJ Popovic, founder and CEO of Houston-based Rhythm Energy, which has acquired Inspire Clean Energy. Photo courtesy of Rhythm

Houston-based Rhythm Energy Inc. acquired Inspire Clean Energy in June 2025 for an undisclosed amount. The deal allowed Rhythm to immediately scale outside of Texas and into the Northeast, Midwest and mid-Atlantic regions.

Houston American Energy closes acquisition of New York low-carbon fuel co.

Houston American Energy Corp. has acquired Abundia Global Impact Group, which converts plastic and certified biomass waste into high-quality renewable fuels. Photo via Getty Images.

Renewable energy company Houston American Energy Corp. (NYSE: HUSA) acquired Abundia Global Impact Group in July 2025. The acquisition created a combined company focused on converting waste plastics into high-value, drop-in, low-carbon fuels and chemical products.

Chevron gets green light on $53 billion Hess acquisition

With the deal, Chevron gets access to one of the biggest oil finds of the decade. Photo via Chevron

In July 2025, Houston-based Chevron scored a critical ruling in Paris that provided the go-ahead for a $53 billion acquisition of Hess and access to one of the biggest oil finds of the decade. Chevron completed its acquisition of Hess shortly after the ruling from the International Chamber of Commerce in Paris.

Investors close partial acquisition of Phillips 66 subsidiary with growing EV network

Two investment firms have scooped up the majority stake in JET, a subsidiary of Phillips 66 with a rapidly growing EV charging network. Photo via Jet.de Facebook.

In December 2025, Energy Equation Partners, a London-based investment firm focused on clean energy companies, and New York-based Stonepeak completed the acquisition of a 65 percent interest in JET Tankstellen Deutschland GmbH, a subsidiary of Houston oil and gas giant Phillips 66.

Houston researchers develop energy-efficient film for AI chips

AI research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.

---

This article originally appeared on our sister site, InnovationMap.

Energy expert: What 2025 revealed about the evolution of Texas power

guest column

2025 marked a pivotal year for Texas’ energy ecosystem. Rising demand, accelerating renewable integration, tightening reserve margins and growing industrial load reshaped the way policymakers, utilities and the broader market think about reliability.

This wasn’t just another year of operational challenges; it was a clear signal that the state is entering an era where growth and innovation must move together in unison if Texas is going to keep pace.

What happened in 2025 is already influencing the decisions utilities, regulators and large energy consumers will make in 2026 and beyond. If Texas is going to remain the nation’s proving ground for large-scale energy innovation, this year made one thing clear: we need every tool working together and working smarter.

What changed: Grid, policy & the growth of renewables

This year, ERCOT recorded one of the steepest demand increases in its history. From January through September 2025, electricity consumption reached 372 terawatt-hours (TWh), a 5 percent increase over the previous year and a 23 percent jump since 2021. That growth officially positions ERCOT as the fastest-expanding large grid in the country.

To meet this rising load, Texas leaned heavily on clean energy. Solar, wind and battery storage served approximately 36 percent of ERCOT’s electricity needs over the first nine months of the year, a milestone that showcased how quickly Texas has diversified its generation mix. Utility-scale solar surged to 45 TWh, up 50 percent year-over-year, while wind generation reached 87 TWh, a 36 percent increase since 2021.

Battery storage also proved its value. What was once niche is now essential: storage helped shift mid-day excess solar to evening peaks, especially during a historic week in early spring when Texas hit new highs for simultaneous wind, solar and battery output.

Still, natural gas remained the backbone of reliability. Dispatchable thermal resources supplied more than 50 percent of ERCOT’s power 92 percent of the time in Q3 2025. That dual structure of fast-growing renewables backed by firm gas generation is now the defining characteristic of Texas’s energy identity.

But growth cuts both ways. Intermittent generation is up, yet demand is rising faster. Storage is scaling, but not quite at the rate required to fill the evening reliability gap. And while new clean-energy projects are coming online rapidly, the reality of rising population, data center growth, electrification and heavy industrial expansion continues to outpace the additions.

A recent forecast from the Texas Legislative Study Group projects demand could climb another 14 percent by mid-2026, tightening reserve margins unless meaningful additions in capacity, or smarter systemwide usage, arrive soon.

What 2025 meant for the energy ecosystem

The challenges of 2025 pushed Texas to rethink reliability as a shared responsibility between grid operators, generation companies, large load customers, policymakers and consumers. The year underscored several realities:

1. The grid is becoming increasingly weather-dependent. Solar thrives in summer; wind dominates in spring and winter. But extreme heat waves and cold snaps also push demand to unprecedented levels. Reliability now hinges on planning for volatility, not just averages.

2. Infrastructure is straining under rapid load growth. The grid handled multiple stress events in 2025, but it required decisive coordination and emerging technologies, such as storage methods, to do so.

3. Innovation is no longer optional. Advanced forecasting, grid-scale batteries, demand flexibility tools, and hybrid renewable-gas portfolios are now essential components of grid stability.

4. Data centers and industrial electrification are changing the game. Large flexible loads present both a challenge and an opportunity. With proper coordination, they can help stabilize the grid. Without it, they can exacerbate conditions of scarcity.

Texas can meet these challenges, but only with intentional leadership and strong public-private collaboration.

The system-level wins of 2025

Despite volatility, 2025 showcased meaningful progress:

Renewables proved their reliability role. Hitting 36 percent of ERCOT’s generation mix for three consecutive quarters demonstrates that wind, solar and batteries are no longer supplemental — they’re foundational.

Storage emerged as a real asset for reliability. Battery deployments doubled their discharge records in early 2025, showing the potential of short-duration storage during peak periods.

The dual model works when balanced wisely. Natural gas continues to provide firm reliability during low-renewable hours. When paired with renewable growth, Texas gains resilience without sacrificing affordability.

Energy literacy increased across the ecosystem. Communities, utilities and even industrial facilities are paying closer attention to how loads, pricing signals, weather and grid conditions interact—a necessary cultural shift in a fast-changing market.

Where Texas goes in 2026

Texas heads into 2026 with several unmistakable trends shaping the road ahead. Rate adjustments will continue as utilities like CenterPoint request cost recovery to strengthen infrastructure, modernize outdated equipment and add the capacity needed to handle record-breaking growth in load.

At the same time, weather-driven demand is expected to stay unpredictable. While summer peaks will almost certainly set new records, winter is quickly becoming the bigger wild card, especially as natural gas prices and heating demand increasingly drive both reliability planning and consumer stress.

Alongside these pressures, distributed energy is set for real expansion. Rooftop solar, community battery systems and hybrid generation-storage setups are no longer niche upgrades; they’re quickly becoming meaningful grid assets that help support reliability at scale.

And underlying all of this is a cultural shift toward energy literacy. The utilities, regulators, businesses, and institutions that understand load flexibility, pricing signals and efficiency strategies will be the ones best positioned to manage costs and strengthen the grid. In a market that’s evolving this fast, knowing how we use energy matters just as much as knowing how much.

The big picture: 2025 as a blueprint for a resilient future

If 2025 showed us anything, it’s that Texas can scale innovation at a pace few states can match. We saw record renewable output, historic storage milestones and strong thermal performance during strain events. The Texas grid endured significant stress but maintained operational integrity.

But it also showed that reliability isn’t a static achievement; it’s a moving target. As population growth, AI and industrial electrification and weather extremes intensify, Texas must evolve from a reactive posture to a proactive one.

The encouraging part is that Texas has the tools, the talent and the market structure to build one of the most resilient and future-ready power ecosystems in the world. The test ahead isn’t whether we can generate enough power; it’s whether we can coordinate systems, technologies and market behavior fast enough to meet the moment.

And in 2026, that coordination is precisely where the opportunity lies.

———

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.