money moves

Houston-based battery innovators receive $4M in federal funding

Houston-based Zeta Energy has fresh funding from the government. Image via Zeta Energy

Houston-based Zeta Energy announced this week that it was selected to receive $4 million in federal funding for the development of efficient electric vehicle batteries.

The funds come from the U.S. Department of Energy's ARPA-E Electric Vehicles for American Low-Carbon Living, or EVs4ALL, program, which aims to increase the number of EVs on the roads by boosting the country’s supply chain of affordable, convenient, reliable and safe batteries.

Zeta Energy is one of 12 groups in the U.S. to receive funding from the program, which awarded $42 million in total.

“Electric vehicle sales in America have tripled since the start of this Administration and by addressing battery efficiency, resiliency and affordability, the projects announced today will make EVs attractive to even more drivers,” U.S. Secretary of Energy Jennifer M. Granholm said in a statement released in January. “This is a win-win for our efforts to fight climate change and power America’s clean transportation future with technologies produced by researchers and scientists right here at home.”

Other teams to receive funding include 24M Technologies, national laboratories and universities like The Ohio State University, University of Maryland, Virginia Tech, among others. Zeta is the only Texas-based company to receive funds. It received one of the largest grants among the group.

"We are thrilled to have been selected for funding by the ARPA-E EVs4ALL program," Zeta Energy CEO Tom Pilette said in a statement. "We have been working hard to make this technology a reality, and we are really grateful to receive this recognition of the promise of our technology and the progress we have made on it."

Zeta Energy is known for its lithium sulfur batteries that traditionally have not been long lasting. While sulfur is an economical and abundant material, it traditionally would dissolve after a few uses in lithium sulfur batteries.

However, Zeta uses its proprietary sulfur-based cathodes and lithium metal anodes that have shown to have higher capacity and density and better safety profiles, according to the company's website.

According to ARPAE, the company will create a new anode that will "be highly accessible and rechargeable" with the funding.

Zeta Energy closed a $23 million series A round led by New York VC firm Moore Strategic Ventures about a year ago. In addition to applications for electric vehicles, the company's technology is also expected to have uses in grid energy storage.

------

This article originally ran on InnovationMap.

Trending News

A View From HETI

Rice's Atin Pramanik and a team in Pulickel Ajayan's lab shared new findings that offer a sustainable alternative to lithium batteries by enhancing sodium and potassium ion storage. Photo by Jeff Fitlow/Courtesy Rice University

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

Trending News