Houston-based Quidnet Energy has secured funding from a Department of Energy program. Image via quidnetenergy.com

A Houston-based company that's got a solution to renewable energy storage secured funding from a federal entity.

The U.S. Department of Energy Advanced Research Projects Agency-Energy, or ARPA-E, is granting Quidnet Energy $10 million in funding, the Houston company announced in November. The funding is a part of the ARPA-E Seeding Critical Advances for Leading Energy technologies with Untapped Potential, the SCALEUP program. This initiative is aimed at providing funding to previous ARPA-E teams "that have been determined to be feasible for widespread deployment and commercialization domestically," per a news release.

“We’re honored that ARPA-E has selected Quidnet Energy as an awardee of the SCALEUP program,” says Joe Zhou, CEO of Quidnet Energy, in the release. “This funding will support continued work on our Geomechanical Pumped Storage (GPS) project with CPS Energy, which will demonstrate the benefits of using proven pumped hydro technology to create a long-duration energy storage resource that doesn’t require mountainous terrain. We look forward to continuing our partnership with CPS Energy and thank ARPA-E for acknowledging the potential of GPS for long-duration storage.”

The company's technology can store renewable energy for long periods of time in large quantities. The process includes storing pressurized water underground and, when the stored energy is needed, the water propels hydroelectric turbines and produces the electricity to support the grid at a fraction of the cost, per the news release. The concept is similar to existing gravity-powered pumped storage, but with less land required.

The fresh funding will be used toward Quidnet Energy’s ongoing project with San Antonio-based utilitary provider CPS Energy. This collaboration is scaling the company's GPS to a 1 MW/10 MWh commercial system, per the release, that will provide CPS Energy with over 10 hour long-duration energy storage system.

In 2020, Quidnet closed its $10 million series B financing round and secured a major contract with the New York State Energy Development Authority. The series B round included participation from Bill Gates-backed Breakthrough Energy Ventures and Canada-based Evok Innovations, which both previously invested in the company, as well as new investors Trafigura and The Jeremy and Hannelore Grantham Environmental Trust.

------

This article originally ran on InnovationMap.

Houston-based Zeta Energy has fresh funding from the government. Image via Zeta Energy

Houston-based battery innovators receive $4M in federal funding

money moves

Houston-based Zeta Energy announced this week that it was selected to receive $4 million in federal funding for the development of efficient electric vehicle batteries.

The funds come from the U.S. Department of Energy's ARPA-E Electric Vehicles for American Low-Carbon Living, or EVs4ALL, program, which aims to increase the number of EVs on the roads by boosting the country’s supply chain of affordable, convenient, reliable and safe batteries.

Zeta Energy is one of 12 groups in the U.S. to receive funding from the program, which awarded $42 million in total.

“Electric vehicle sales in America have tripled since the start of this Administration and by addressing battery efficiency, resiliency and affordability, the projects announced today will make EVs attractive to even more drivers,” U.S. Secretary of Energy Jennifer M. Granholm said in a statement released in January. “This is a win-win for our efforts to fight climate change and power America’s clean transportation future with technologies produced by researchers and scientists right here at home.”

Other teams to receive funding include 24M Technologies, national laboratories and universities like The Ohio State University, University of Maryland, Virginia Tech, among others. Zeta is the only Texas-based company to receive funds. It received one of the largest grants among the group.

"We are thrilled to have been selected for funding by the ARPA-E EVs4ALL program," Zeta Energy CEO Tom Pilette said in a statement. "We have been working hard to make this technology a reality, and we are really grateful to receive this recognition of the promise of our technology and the progress we have made on it."

Zeta Energy is known for its lithium sulfur batteries that traditionally have not been long lasting. While sulfur is an economical and abundant material, it traditionally would dissolve after a few uses in lithium sulfur batteries.

However, Zeta uses its proprietary sulfur-based cathodes and lithium metal anodes that have shown to have higher capacity and density and better safety profiles, according to the company's website.

According to ARPAE, the company will create a new anode that will "be highly accessible and rechargeable" with the funding.

Zeta Energy closed a $23 million series A round led by New York VC firm Moore Strategic Ventures about a year ago. In addition to applications for electric vehicles, the company's technology is also expected to have uses in grid energy storage.

------

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Elon Musk vows to put data centers in space and run them on solar power

Outer Space

Elon Musk vowed this week to upend another industry just as he did with cars and rockets — and once again he's taking on long odds.

The world's richest man said he wants to put as many as a million satellites into orbit to form vast, solar-powered data centers in space — a move to allow expanded use of artificial intelligence and chatbots without triggering blackouts and sending utility bills soaring.

To finance that effort, Musk combined SpaceX with his AI business on Monday, February 2, and plans a big initial public offering of the combined company.

“Space-based AI is obviously the only way to scale,” Musk wrote on SpaceX’s website, adding about his solar ambitions, “It’s always sunny in space!”

But scientists and industry experts say even Musk — who outsmarted Detroit to turn Tesla into the world’s most valuable automaker — faces formidable technical, financial and environmental obstacles.

Feeling the heat

Capturing the sun’s energy from space to run chatbots and other AI tools would ease pressure on power grids and cut demand for sprawling computing warehouses that are consuming farms and forests and vast amounts of water to cool.

But space presents its own set of problems.

Data centers generate enormous heat. Space seems to offer a solution because it is cold. But it is also a vacuum, trapping heat inside objects in the same way that a Thermos keeps coffee hot using double walls with no air between them.

“An uncooled computer chip in space would overheat and melt much faster than one on Earth,” said Josep Jornet, a computer and electrical engineering professor at Northeastern University.

One fix is to build giant radiator panels that glow in infrared light to push the heat “out into the dark void,” says Jornet, noting that the technology has worked on a small scale, including on the International Space Station. But for Musk's data centers, he says, it would require an array of “massive, fragile structures that have never been built before.”

Floating debris

Then there is space junk.

A single malfunctioning satellite breaking down or losing orbit could trigger a cascade of collisions, potentially disrupting emergency communications, weather forecasting and other services.

Musk noted in a recent regulatory filing that he has had only one “low-velocity debris generating event" in seven years running Starlink, his satellite communications network. Starlink has operated about 10,000 satellites — but that's a fraction of the million or so he now plans to put in space.

“We could reach a tipping point where the chance of collision is going to be too great," said University at Buffalo's John Crassidis, a former NASA engineer. “And these objects are going fast -- 17,500 miles per hour. There could be very violent collisions."

No repair crews

Even without collisions, satellites fail, chips degrade, parts break.

Special GPU graphics chips used by AI companies, for instance, can become damaged and need to be replaced.

“On Earth, what you would do is send someone down to the data center," said Baiju Bhatt, CEO of Aetherflux, a space-based solar energy company. "You replace the server, you replace the GPU, you’d do some surgery on that thing and you’d slide it back in.”

But no such repair crew exists in orbit, and those GPUs in space could get damaged due to their exposure to high-energy particles from the sun.

Bhatt says one workaround is to overprovision the satellite with extra chips to replace the ones that fail. But that’s an expensive proposition given they are likely to cost tens of thousands of dollars each, and current Starlink satellites only have a lifespan of about five years.

Competition — and leverage

Musk is not alone trying to solve these problems.

A company in Redmond, Washington, called Starcloud, launched a satellite in November carrying a single Nvidia-made AI computer chip to test out how it would fare in space. Google is exploring orbital data centers in a venture it calls Project Suncatcher. And Jeff Bezos’ Blue Origin announced plans in January for a constellation of more than 5,000 satellites to start launching late next year, though its focus has been more on communications than AI.

Still, Musk has an edge: He's got rockets.

Starcloud had to use one of his Falcon rockets to put its chip in space last year. Aetherflux plans to send a set of chips it calls a Galactic Brain to space on a SpaceX rocket later this year. And Google may also need to turn to Musk to get its first two planned prototype satellites off the ground by early next year.

Pierre Lionnet, a research director at the trade association Eurospace, says Musk routinely charges rivals far more than he charges himself —- as much as $20,000 per kilo of payload versus $2,000 internally.

He said Musk’s announcements this week signal that he plans to use that advantage to win this new space race.

“When he says we are going to put these data centers in space, it’s a way of telling the others we will keep these low launch costs for myself,” said Lionnet. “It’s a kind of powerplay.”

$21.5 billion merger will create Houston-based energy powerhouse

Major Merger

Oklahoma City, Oklahoma-based Devon Energy has agreed to buy Houston-based Coterra Energy in a $21.5 billion all-stock deal, forming an energy powerhouse that will be headquartered in Houston. The combined company, boasting an enterprise value of $58 billion, will adopt the Devon brand name.

Revenue for the two publicly traded companies totaled nearly $18.8 billion in the first nine months of 2025. Devon is a Fortune 500 company, but Coterra doesn’t appear in the most recent ranking.

The deal, already approved by the boards of both companies, is expected to close in the second quarter of 2026. Once the transaction is completed, Devon shareholders will own about 54 percent of the combined company and Coterra shareholders will own 46 percent.

“This transformative merger combines two companies with proud histories and cultures of operational excellence, creating a premier shale operator,” says Clay Gaspar, Devon’s president and CEO.

The combined company will be one of the world’s largest shale producers, with third-quarter 2025 production exceeding 550 thousand barrels of oil per day and 4.3 billion cubic feet of gas per day. A significant presence in the Delaware Basin, encompassing hundreds of thousands of acres, will anchor the company’s operations. The 10,000-square-mile Delaware Basin is in West Texas and southeastern New Mexico.

The new Devon also will operate in the Permian Basin, located in West Texas and New Mexico; Marcellus Shale, located in five states in the East; and Anadarko Basin, located in the Texas Panhandle, Colorado, Kansas, and Oklahoma.

Gaspar will be president and CEO of the combined company, and Tom Jorden, chairman, president, and CEO of Coterra, will be non-executive chairman.

Houston climatech startup closes $5M seed round to scale copper alternative

seeing green

Houston-based material science and climatech startup DexMat has closed a $5 million seed round.

The round was led by non sibi ventures, with participation from Governance Partners, Tailwind Futures, BetterWay, Capital Factory and other investors. The company additionally announced that it has secured $3 million of non-dilutive funding.

DexMat plans to use the recent round to commercially scale Galvorn, its carbon-based conductive fiber. The high-performance copper alternative, originally developed at Rice University, is made from carbon nanotube (CNT) fibers, which are less energy- and CO2-intensive to produce.

The company says it will grow its technical and commercial teams and advance pilot-scale production to meet demand from new and existing customers in aerospace, defense and manufacturing industries.

"We’re seeing clear customer pull, particularly in wire and cable applications, as manufacturers look for conductive materials that are less dense, more durable, and resilient at scale,” Bryan Guido Hassin, CEO of DexMat, said in a news release. “This funding allows us to meet near-term demand and expand production capabilities in response to evolving supply-chain constraints."

The recent funding comes after a year of impressive growth. According to the news release, DexMat more than doubled its production and sales of Galvorn in 2025 compared to the previous year.

“We consistently hear the same message from customers: the material performs really well, and they need more of it at a lower cost,” Dmitri Tsentalovich, co-founder and CTO of DexMat, added in the release. “This round supports the production scale-up and cost reductions required to move Galvorn into broader commercial use.”

DexMat raised $3 million in funding in a round led by Shell Ventures in 2023. The company reports a 20-fold increase in capacity since its pre-seed round, along with a 96 percent reduction in production costs.

DexMat's technology was originally developed in the Rice University lab of co-founder Matteo Pasquali, who also serves as director of Rice’s Carbon Hub. According to previous reports, the company was built on over $20 million in non-dilutive funding—including grants from the Air Force Research Laboratory, Air Force Office of Scientific Research, U.S. Department of Energy, NASA, Advanced Functional Fabrics of America and the National Science Foundation—with Rice University included in the list of original investors.