seeing green

Houston energy storage startup secures $10M in federal funding

Houston-based Quidnet Energy has secured funding from a Department of Energy program. Image via quidnetenergy.com

A Houston-based company that's got a solution to renewable energy storage secured funding from a federal entity.

The U.S. Department of Energy Advanced Research Projects Agency-Energy, or ARPA-E, is granting Quidnet Energy $10 million in funding, the Houston company announced in November. The funding is a part of the ARPA-E Seeding Critical Advances for Leading Energy technologies with Untapped Potential, the SCALEUP program. This initiative is aimed at providing funding to previous ARPA-E teams "that have been determined to be feasible for widespread deployment and commercialization domestically," per a news release.

“We’re honored that ARPA-E has selected Quidnet Energy as an awardee of the SCALEUP program,” says Joe Zhou, CEO of Quidnet Energy, in the release. “This funding will support continued work on our Geomechanical Pumped Storage (GPS) project with CPS Energy, which will demonstrate the benefits of using proven pumped hydro technology to create a long-duration energy storage resource that doesn’t require mountainous terrain. We look forward to continuing our partnership with CPS Energy and thank ARPA-E for acknowledging the potential of GPS for long-duration storage.”

The company's technology can store renewable energy for long periods of time in large quantities. The process includes storing pressurized water underground and, when the stored energy is needed, the water propels hydroelectric turbines and produces the electricity to support the grid at a fraction of the cost, per the news release. The concept is similar to existing gravity-powered pumped storage, but with less land required.

The fresh funding will be used toward Quidnet Energy’s ongoing project with San Antonio-based utilitary provider CPS Energy. This collaboration is scaling the company's GPS to a 1 MW/10 MWh commercial system, per the release, that will provide CPS Energy with over 10 hour long-duration energy storage system.

In 2020, Quidnet closed its $10 million series B financing round and secured a major contract with the New York State Energy Development Authority. The series B round included participation from Bill Gates-backed Breakthrough Energy Ventures and Canada-based Evok Innovations, which both previously invested in the company, as well as new investors Trafigura and The Jeremy and Hannelore Grantham Environmental Trust.

------

This article originally ran on InnovationMap.

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News