These five Houston-based energy transition research news articles trended this year on EnergyCapital. Photo via Getty Images

Editor's note: As the year comes to a close, EnergyCapital is looking back at the year's top stories in Houston energy transition. When it comes to the future of energy, Houston has tons of forward-thinking minds hard at work researching solutions to climate change and its impact on Earth. The following research-focused articles that stood out to readers this year — be sure to click through to read the full story.

University of Houston secures $3.6M from DOE program to fund sustainable fuel production

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release. Continue reading.

Rice University semiconductor researchers join DARPA-funded Texas team

Researchers from Rice University and the University of Texas have teamed up for semiconductor microsystem innovation. Photo courtesy of UT

A team led by the University of Texas at Austin and partnered with Rice University was awarded $840 million to develop “the next generation of high-performing semiconductor microsystems" for the U.S. Department of Defense.

The Defense Advanced Research Projects Agency (DARPA) selected UT’s Texas Institute for Electronics (TIE) semiconductor consortium to establish a national open access R&D and prototyping fabrication facility.

The facility hopes to enable the DOD to create higher performance, lower power, lightweight, and compact defense systems. The technology could apply to radar, satellite imaging, unmanned aerial vehicles, or other systems, and ultimately will assist with national security and global military leadership. As a member of DARPA’s Next Generation Microelectronics Manufacturing (NGMM) team, Rice’s contributions are key.

Executive vice president for research Ramamoorthy Ramesh and the Rice researchers will focus on technologies for improving computing efficiency. In a Rice press release, Ramesh notes the need to enhance “energy-efficient computing” which highlights Rice’s qualifications to contribute to the solution. Continue reading.

Houston lab develops reactor that sustainably turns waste into ammonia

Led by Haotian Wang (left) and Feng-Yang Chen, the Rice University team published a study this month detailing how its reactor system sustainably converts waste into ammonia. Photo by Jeff Fitlow/Rice University

A team of Rice University engineers has developed a reactor design that can decarbonize ammonia production, produce clean water and potentially have applications in further research into other eco-friendly chemical processes.

Led by Rice associate professor Haotian Wang, the team published a study this month in the journal Nature Catalysis that details how the new reactor system sustainably and efficiently converts nitrates (common pollutants found in industrial wastewater and agricultural runoff) into ammonia, according to the university. The research was supported by Rice and the National Science Foundation.

“Our findings suggest a new, greener method of addressing both water pollution and ammonia production, which could influence how industries and communities handle these challenges,” Wang says in a statement. “If we want to decarbonize the grid and reach net-zero goals by 2050, there is an urgent need to develop alternative ways to produce ammonia sustainably.” Continue reading.

Houston-area researchers score $1.5M grant to develop storm response tech platform

OpenSafe.AI, a new platform that utilizes AI, data, and hazard and resilience models to support storm response decision makers, has secured an NSF grant. Photo via Getty Images

Researchers from Rice University have secured a $1.5 million grant from the National Science Foundation to continue their work on improving safety and resiliency of coastal communities plagued by flooding and hazardous weather.

The Rice team of engineers and collaborators includes Jamie Padgett, Ben Hu, and Avantika Gori along with David Retchless at Texas A&M University at Galveston. The researchers are working in collaboration with the Severe Storm Prediction, Education and Evacuation from Disasters (SSPEED) Center and the Ken Kennedy Institute at Rice and A&M-Galveston’s Institute for a Disaster Resilient Texas.

Together, the team is developing and hopes to deploy “Open-Source Situational Awareness Framework for Equitable Multi-Hazard Impact Sensing using Responsible AI,” or OpenSafe.AI, a new platform that utilizes AI, data, and hazard and resilience models "to provide timely, reliable and equitable insights to emergency response organizations and communities before, during and after tropical cyclones and coastal storm events," reads a news release from Rice. Continue reading.

$360M DOE grant to fund project that will connect ERCOT to US power grid

For the first time, Texas's ERCOT grid will be connected to other states' grids thanks to funding from the Department of Energy. Photo via Getty Images

Thanks to recently announced funding, the power grid for the territory served by the Electric Reliability Council of Texas (ERCOT) will be connected to grids in other states.

Officials hope building a 320-mile transmission line that connects the ERCOT electric grid to electric grids in the Southeast will prevent power outages like the massive blackout that occurred in 2022 when a winter storm blasted Texas.

San Francisco-based Pattern Energy says its Southern Spirit project will cost more than $2.6 billion. Full-scale construction is supposed to get underway in 2028, and the project is set to go online in 2031. Continue reading.

While our grid may be showing its age, this is the perfect time to shift from reacting to problems to getting ahead of them.

Reshaping the Texas grid: The impact of EVs, AI, renewables, and extreme weather

guest column

Did you catch those images of idle generators that CenterPoint had on standby during Hurricane Beryl? With over 2 million people in the Houston area left in the dark, many were wondering, "if the generators are ready, why didn’t they get used?" It seems like power outages are becoming just as common as the severe storms themselves.

But as Ken Medlock, Senior Director of the Baker Institute Center for Energy Studies (CES) explains, it's not a simple fix. The outages during Hurricane Beryl were different from what we saw during Winter Storm Uri. This time, with so many poles and wires down, those generators couldn’t be put to use. It’s a reminder that each storm brings its own set of challenges, and there’s no one-size-fits-all solution when it comes to keeping the lights on. While extreme weather is one of the leading threats to our electric grid, it's certainly not the only one adding strain on our power infrastructure.

The rapid rise of artificial intelligence (AI) and electric vehicles (EVs) is transforming the way we live, work, and move. Beneath the surface of these technological marvels lies a challenge that could define the future of our energy infrastructure: they all depend on our electrical grid. As AI-powered data centers and a growing fleet of EVs demand more power than ever before, our grid—already under pressure from extreme weather events and an increasing reliance on renewable energy—faces a critical test. The question goes beyond whether our grid can keep up, but rather focuses on how we can ensure it evolves to support the innovations of tomorrow without compromising reliability today. The intersection of these emerging technologies with our aging energy infrastructure poses a dilemma that policymakers, industry leaders, and consumers must address.

Julie Cohn, Nonresident Fellow at the Center for Energy Studies at the Baker Institute for Public Policy, presents several key findings and recommendations to address concerns about the reliability of the Texas energy grid in her Energy Insight. She suggests there’s at least six developments unfolding that will affect the reliability of the Texas Interconnected System, operated by the Electric Reliability Council of Texas (ERCOT) and the regional distribution networks operated by regulated utilities.

Let’s dig deeper into some of these issues:

AI

AI requires substantial computational power, particularly in data centers that house servers processing vast amounts of data. These data centers consume large amounts of electricity, putting additional strain on the grid.

According to McKinsey & Company, a single hyperscale data center can consume as much electricity as 80,000 homes combined. In 2022, data centers consumed about 200 terawatt-hours (TWh), close to 4 percent, of the total electricity used in the United States and approximately 460 TWh globally. That’s nearly the consumption of the entire State of Texas, which consumed approximately 475.4 TWh of electricity in the same year. However, this percentage is expected to increase significantly as demand for data processing and storage continues to grow. In 2026, data centers are expected to account for 6 percent, almost 260 TWh, of total electricity demand in the U.S.

EVs

According to the Texas Department of Motor Vehicles, approximately 170,000 EVs have been registered across the state of Texas as of 2023, with Texas receiving $408 million in funding to expand its EV charging network. As Cohn suggests, a central question remains: Where will these emerging economic drivers for Texas, such as EVs and AI, obtain their electric power?

EVs draw power from the grid every time they’re plugged in to charge. This may come as a shock to some, but “the thing that’s recharging EV batteries in ERCOT right now, is natural gas,” says Medlock. And as McKinsey & Company explains, the impact of switching to EVs on reducing greenhouse gas (GHG) emissions will largely depend on how much GHG is produced by the electricity used to charge them. This adds a layer of complexity as regulators look to decarbonize the power sector.

Depending on the charger, a single EV fast charger can pull anywhere from 50 kW to 350 kW of electricity per hour. Now, factor in the constant energy drain from data centers, our growing population using power for homes and businesses, and then account for the sudden impact of severe environmental events—which have increased in frequency and intensity—and it’s clear: Houston… we have a problem.

The Weather Wildcard

Texas is gearing up for its 2025 legislative session on January 14. The state's electricity grid once again stands at the forefront of political discussions. The question is not just whether our power will stay on during the next winter storm or scorching summer heatwave, but whether our approach to grid management is sustainable in the face of mounting challenges. The events of recent years, from Winter Storm Uri to unprecedented heatwaves, have exposed significant vulnerabilities in the Texas electricity grid, and while legislative measures have been taken, they have been largely patchwork solutions.

Winter Storm Uri in 2021 was a wake-up call, but it wasn’t the first or last extreme weather event to test the Texas grid. With deep freezes, scorching summers, and unpredictable storms becoming the norm rather than the exception, it is clear that the grid’s current state is not capable of withstanding these extremes. The measures passed in 2021 and 2023 were steps in the right direction, but they were reactive, not proactive. They focused on strengthening the grid against cold weather, yet extreme heat, a more consistent challenge in Texas, remains a less-addressed threat. The upcoming legislative session must prioritize comprehensive climate resilience strategies that go beyond cold weather prep.

“The planners for the Texas grid have important questions to address regarding anticipated weather extremes: Will there be enough energy? Will power be available when and where it is needed? Is the state prepared for extreme weather events? Are regional distribution utilities prepared for extreme weather events? Texas is not alone in facing these challenges as other states have likewise experienced extremely hot and dry summers, wildfires, polar vortexes, and other weather conditions that have tested their regional power systems,” writes Cohn.

Renewable Energy and Transmission

Texas leads the nation in wind and solar capacity (Map: Energy, Environment, and Policy in the US), however the complexity lies in getting that energy from where it’s produced to where it’s needed. Transmission lines are feeling the pressure, and the grid is struggling to keep pace with the rapid expansion of renewables. In 2005, the Competitive Renewable Energy Zones (CREZ) initiative showed that state intervention could significantly accelerate grid expansion. With renewables continuing to grow, the big question now is whether the state will step up again, or risk allowing progress to stall due to the inadequacy of the infrastructure in place. The legislature has a choice to make: take the lead in this energy transition or face the consequences of not keeping up with the pace of change.

Conclusion

The electrical grid continues to face serious challenges, especially as demand is expected to rise. There is hope, however, as regulators are fully aware of the strain. While our grid may be showing its age, this is the perfect time to shift from reacting to problems to getting ahead of them.

As Cohn puts it, “In the end, successful resolution of the various issues will carry significant benefits for existing Texas industrial, commercial, and residential consumers and have implications for the longer-term economic attractiveness of Texas. Suffice it to say, eyes will be, and should be, on the Texas legislature in the coming session.”

------------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn on September 11, 2024.

Reliant and GM Energy will be offering free nighttime charging for Chevrolet electric vehicle drivers that enroll in the new Reliant FreeCharge Nights. Photo via reliant.com

Reliant, GM Energy team up on free renewable energy EV charging

plugging in

Reliant Energy and GM Energy are advancing a new renewable energy electricity plan that will “accelerate the clean energy journey for the two companies and their customers,” according to a news release.

Houston-based Reliant and GM Energy will be offering free nighttime charging for Chevrolet electric vehicle drivers that enroll in the new Reliant FreeCharge Nights.

The Reliant FreeCharge Nights plan will be available to existing and new Reliant electricity customers, and provides a monthly bill credit that offsets the energy charges incurred from charging the qualifying EV between 11 pm and 6 am. Customers must first designate one EV to receive the charging credit in their GM Energy Smart Charging Portal before signing up for the plan.

“As we continue to shape the future of EV charging and energy management for our customers, our work alongside Reliant in Texas is a sign of our commitment to working with industry leaders to facilitate more solutions that make EV adoption an easy decision,” Aseem Kapur, chief revenue officer, GM Energy, says in a news release. “The Reliant Free Charge Nights plan is a great example of how an automaker and an energy company can work together to build the ecosystem to support the all-electric future.”

Over 150 Chevrolet dealerships can now offer the plan to EV drivers upon vehicle purchase across Texas. The plan will be powered by 100 percent renewable energy through the purchase of renewable energy certificates (RECs) equal to the customer’s electricity usage.

“We’re excited to help Chevrolet EV drivers offset the cost of charging their vehicle all while having access to a renewable electricity plan,” Rasesh Patel, president, NRG Consumer, said in a news release.

Through Dsider’s techno-economic analysis platform, Sujatha Kumar is helping startups bridge the critical gap between vision and execution, ensuring they can navigate complex markets with confidence. Photo via LinkedIn

Podcast: How this Houston energy tech startup transforms innovation into scalable success

now streaming

What if the future of clean energy wasn’t just about invention, but execution? For Sujatha Kumar, CEO of Dsider, success in clean tech hinges on more than groundbreaking technology—it’s about empowering founders with the tools to make their innovations viable, scalable, and economically sound.

Through Dsider’s techno-economic analysis (TEA) platform, Kumar is helping startups bridge the critical gap between vision and execution, ensuring they can navigate complex markets with confidence.

In a recent episode of the Energy Tech Startups Podcast, Kumar shared her insights on the growing importance of TEA in the hard tech space. While clean energy innovation promises transformative solutions, the challenge lies in proving both technical feasibility and economic sustainability. Kumar argues that many early-stage founders, especially in fields like carbon capture, microgrids, and renewable energy, lack the necessary financial tools to assess market fit and long-term profitability—a gap Dsider aims to fill.

What Makes Dsider Unique?

Dsider offers more than just financial modeling—it creates actionable insights, tailored to the demands of the clean energy sector. At its core, the platform integrates TEA with operational planning, equipping founders with the ability to run scenario analyses, optimize pricing strategies, and anticipate market challenges. “It’s not just about building a product—it’s about understanding how to make that product thrive in a dynamic, ever-evolving market,” Kumar explained.

In industries where data is limited and stakes are high, startups often struggle to translate early pilots into scalable solutions. Kumar emphasized how Dsider’s approach helps founders forecast regulatory shifts, project downtime risks, and identify key economic drivers—turning complex calculations into a clear strategic roadmap. This foresight enables startups to align with customer expectations and investor requirements from the outset, a step that is often overlooked in early development stages.

Why TEA is Critical for Founders

“Clean tech innovation is hard,” Kumar emphasized, “because there is no historical data to guide decisions.” Startups often operate in unfamiliar territory, where understanding market fit and pricing models is essential. Through TEA, founders can build a financial narrative, simulate real-world conditions, and show investors or customers how their solutions will perform.

Jason, an experienced founder, echoed this sentiment, reflecting on his own mistakes:

"I wish I’d done a TEA earlier—during my first pilot, we didn’t budget for enough support, and it cost us a key customer."

The takeaway? Even at the pilot stage, TEA is invaluable. As Kumar noted, failing early pilots can prevent startups from scaling—making upfront analysis essential for success.

Beyond Technology: Bridging Gaps Between Founders, Investors, and Customers

Kumar highlighted the need to align founders, investors, and customers through a shared understanding of value. TEA enables this by allowing founders to communicate in the same language as their stakeholders—from efficiency gains to regulatory compliance. Dsider's platform provides tools for scenario modeling, allowing startups to optimize for both technology performance and economic outcomes.

One challenge, she noted, is that many founders are scientists without financial backgrounds. “Our goal is to simplify that complexity, so founders can focus on their technology while we take care of the analysis,” Kumar explained. Dsider helps startups anticipate questions from investors, simulate risks, and optimize business models from the start.

A New Way to Sell: Using TEA as a Business Development Tool

Kumar described how TEA can be more than a financial tool—it can become a business development asset. Founders can use Dsider to create customized reports for potential customers, demonstrating the specific value their technology brings. With interactive models and scenario analysis, startups can quickly respond to customer needs and build trust through transparency.

Future Growth

Looking ahead, Dsider aims to scale its operations and expand its impact by continuing to support early-stage founders with affordable, high-impact tools. With growing regulatory support for clean tech and an increasing demand for sustainable solutions, Dsider is positioned to become a key player in the energy tech startup ecosystem.

By bridging the gap between innovation and economics, Dsider is helping founders navigate complex challenges and build businesses that are both profitable and impactful—setting a strong foundation for future growth in the climate tech space.

Listen to the full episode with Sujatha Kumar on the Energy Tech Startups Podcast here.

———

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.
Molecule Software made enhancements to its product, called Hive, to enable its clients to manage their energy portfolio and renewable credits together in one scalable platform. Image via molecule.io

Houston tech company expands platform to include renewable certificates

upgrade

A Houston-based energy trading risk management software company announced enhancements to its platform that will simplify the process of managing and allocating renewable energy certificates — a tool to help to meet demand obligations.

Molecule Software made these new enhancements to its product, called Hive, to enable its clients to manage their energy portfolio and renewable credits together in one scalable platform. With Hive, users simplify massive data stacks and reduce manual workloads while preventing errors.

“Renewables are still a new frontier, and one of the biggest challenges we’ve seen is modeling all their nuances in a way that makes sense for informing retirement and predicting the market,” says Sameer Soleja, founder and CEO of Molecule, in a news release. “Another major challenge is the sheer volume of data associated with modeling certificates and their individual serial numbers.”

Hive was first onboarded to Molecule’s core ETRM platform in 2022, and already provides its users renewable certificate management — including trading, forecasting, minting, matching, allocation, and traceback. Now, Hive also has improved visibility, navigation, auditing, and more — all tools that make renewable certificates easier to manage and meet carbon offset obligations.

“Renewable certificates are becoming de rigueur in the market as energy companies’ businesses grow and they open new trading desks for them. Molecule offers what we see as the most mature solution in the market for handling renewable instruments, reliably and at scale,” continues Soleja. “We’re continuing to build more within Molecule to make that functionality even more valuable for our customers.”

Houstonians, here's how to get solar panels affordably. Photo by Kindel Media/Pexels

Expert shares tips on ways to make solar panels more accessible to Houstonians

guest column

There’s no question that some homeowners feel a twinge of envy when they see solar panels appearing on homes in their neighborhood. The twin benefits of cutting utility costs and participating in renewable energy are alluring to many.

But as those homeowners consider going solar, many never take the plunge because of concerns about affordability, maintenance and uncertainties around qualifying for tax credits and other state and local rebates. For all its appeal, going solar can seem a bit daunting.

But there are more plentiful financing options available to many Texas homeowners that offer accommodating paths for acquiring solar. They also provide solutions to concerns around maintenance and affordability.

Two innovative strategies for switching to solar

Solar energy providers have been working diligently to deliver more convenient pathways for consumers to make the switch. Recently, two new strategies were introduced in Texas: direct, loan-based ownership, and third-party ownership.

Direct system ownership

With this option, homeowners take out a loan to cover the cost of their solar system and its installation. They can then repay that loan over timeframes ranging from five to twenty-five years.

There are varying rates and terms available to accommodate the preferences and goals of individual homeowners. And while manufacturer warranties and installer workmanship warranties have been available to homeowners, it is important to look for companies that offer guarantees for an extended period of time given that most systems can last several decades. For example, Freedom Forever offers a 25-year production guarantee that provides consumers with a measure of comfort around the long-term costs of owning these systems.

Third-party ownership

Another solar financing option involves third-party ownership using a Power Purchase Agreement (PPA) or lease. With a PPA option, a third-party owns the system, and homeowners either agree to buy power at a pre-defined rate per kWh or through a set monthly payment. Homeowners also have the option of leasing the panels for comparable pre-defined rates or monthly payments. (Maybe add one more sentence that explains the difference between PPAs vs lease).

With these two options, the third party insures and maintains the system. This alleviates some of the maintenance and up front cost concerns that have held some back from solar.

Issues to consider before making the switch

Even with the availability of these new options, solar power doesn’t always make sense for everyone. Your personal energy goals and preferences, as well as your tax situation, are important factors to consider when making this decision. Here are some questions folks should ask before making the switch:

  • Would I prefer owning the system outright or relying on a third-party to handle insurance and maintenance?
  • Am I looking for monthly savings now through a PPA or lease or would I prefer the quickest payback and return on investment?
  • Do I have a tax liability that enables me to get a Federal Tax Credit?

The answers to these questions will help you determine which option, if any, makes sense for you. It’s important to remember there is no “best solution for everyone” when considering your options; there’s only the question of what’s right for you.

Other important considerations

Keep in mind that not everyone will qualify for one of the solar options described above. Even in these cases, your state, local utility or a regional credit union may offer alternative financing options that can help you access solar.

Home equity lines of credit may also be a fitting option for some. Dsireusa.org is an excellent resource to help you investigate what incentives and programs are available in your area.

Final tips

As with any important financial decision, it’s a homeowner’s’ responsibility to practice due diligence in terms of assessing what they can afford and who they buy from. Here are some recommended best practices:

  1. Always get several quotes from various companies.
  2. Ask about production guarantees and warranties.
  3. Ask about the need of a service panel upgrade at the start.
  4. Verify that the company you choose offers products that will work with your home construction and roof.
  5. Prioritize solar providers with an extensive list of authorized dealers, such as Freedom Forever.
  6. Confirm that your prospective solar partner has purchasing options around loans and financing and can help you identify the option that best suits your needs.

The good news is that more homeowners than ever before can now feel more comfortable moving to solar. The new options described above for financing and maintenance can make that switch considerably less daunting than it seemed only a few years ago.

———

Robert Angell is the vice president of sales operations at Freedom Forever, one the nation’s largest solar installers.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

ExxonMobil invests over $200M in Texas advanced recycling sites

doubling down

ExxonMobil announced that it plans to invest more than $200 million to expand its advanced recycling operations at its Baytown and Beaumont sites that are expected to start in 2026. The new operations can help increase advanced recycling rates and divert plastic from landfills, according to ExxonMobil.

“We are solutions providers, and this multi-million-dollar investment will enhance our ability to convert hard-to-recycle plastics into raw materials that produce valuable new products,” says Karen McKee, president of ExxonMobil Product Solutions, in a news release.

The investment plans to add 350 million pounds per year of advanced recycling capacity at Baytown and Beaumont, which will bring ExxonMobil’s total capacity to 500 million pounds annually. The first Baytown facility started in 2022 and represents one of the largest advanced recycling facilities in North America by having processed more than 70 million pounds of plastic waste.

“At our Baytown site, we’ve proven advanced recycling works at scale, which gives us confidence in our ambition to provide the capacity to process more than 1 billion pounds of plastic per year around the world,” McKee said in a news release. “We’re proud of this proprietary technology and the role it can play in helping establish a circular economy for plastics and reducing plastic waste.”

Advanced recycling works by transforming plastic waste into raw materials that can be used to make products from fuels to lubricants to high-performance chemicals and plastics. Advanced recycling allows for a broader range of plastic waste that won't be mechanically recycled and may otherwise be buried or burned.

ExxonMobil will continue development of additional advanced recycling projects at manufacturing sites in North America, Europe and Asia with the goal of reaching 1 billion pounds per year of recycling capacity by 2027.

Houston-based Fervo Energy collects $255M in additional funding

cha-ching

A Houston company that's responding to rising energy demand by harnessing geothermal energy through its technology has again secured millions in funding. The deal brings Fervo's total funding secured this year to around $600 million.

Fervo Energy announced that it has raised $255 million in new funding and capital availability. The $135 million corporate equity round was led by Capricorn’s Technology Impact Fund II with participating investors including Breakthrough Energy Ventures, CalSTRS, Congruent Ventures, CPP Investments, DCVC, Devon Energy, Galvanize Climate Solutions, Liberty Mutual Investments, Mercuria, and Sabanci Climate Ventures.

The funding will go toward supporting Fervo's ongoing and future geothermal projects.

“The demand for 24/7 carbon-free energy is at an all-time high, and Fervo is one of the only companies building large projects that will come online before the end of the decade,” Fervo CEO and Co-Founder Tim Latimer says in a news release. “Investors recognize that Fervo’s ability to get to scale quickly is vital in an evolving market that is seeing unprecedented energy demand from AI and other sources.”

Additionally, Fervo secured a $120 million letter of credit and term loan facility from Mercuria, an independent energy and commodity group that previously invested in the company.

“In surveying power markets across the U.S. today, the need for next-generation geothermal is undeniable,” Brian Falik, group chief investment officer of Mercuria, adds. “We believe in Fervo not just because their EGS approach is cost-effective, commercially viable, and already being deployed at scale, but because they set ambitious targets and consistently deliver.”

In February, Fervo secured $244 million in a financing round led by Devon Energy, and in September, the company received a $100 million bridge loan for the first phase of its ongoing project in Utah. This project, known as Project Cape, represents a 100x growth opportunity for Fervo, as Latimer explained to InnovationMap earlier this year. As of now, Project Cape is fully permitted up to 2 GW and will begin generating electricity in 2026, per the company.

Other wins for Fervo this year include moving into its new headquarters in downtown Houston, securing a power purchase agreement with California, growing its partnership with Google, and being named amongst the year's top inventions by Time magazine.


———

This article originally ran on InnovationMap.