A new JLL report predicts that power will become the primary factor in selecting future data center sites, with renewables playing a major role. Photo courtesy JLL.

Renewable energy is evolving as the primary energy source for large data centers, according to a new report.

The 2026 Global Data Center Outlook from commercial real estate services giant JLL points out that the pivot toward big data centers being powered by renewable energy stems from rising electricity costs and tightening carbon reduction requirements. In the data center sector, renewable energy, such as solar and wind power, is expected to outcompete fossil fuels on cost, the report says.

The JLL forecast carries implications for the Houston area’s tech and renewable energy sectors.

As of December, Texas was home to 413 data centers, second only to Virginia at 665, according to Visual Capitalist. Dozens more data centers are in the pipeline, with many of the new facilities slated for the Houston, Austin, Dallas-Fort Worth and San Antonio areas.

Amid Texas’ data center boom, several Houston companies are making inroads in the renewable energy market for data centers. For example, Houston-based low-carbon energy supplier ENGIE North America agreed last May to supply up to 300 megawatts of wind power for a Cipher Mining data center in West Texas.

The JLL report says power, not location or cost, will become the primary factor in selecting sites for data centers due to multi-year waits for grid connections.

“Energy infrastructure has emerged as the critical bottleneck constraining expansion [of data centers],” the report says. “Grid limitations now threaten to curtail growth trajectories, making behind-the-meter generation and integrated battery storage solutions essential pathways for sustainable scaling.”

Behind-the-meter generation refers to onsite energy systems such as microgrids, solar panels and solar battery storage. The report predicts global solar capacity will expand by roughly 100 gigawatts between 2026 and 2030 to more than 10,000 gigawatts.

“Solar will account for nearly half of global renewable energy capacity in 2026, and despite its intermittent properties, solar will remain a key source of sustainable energy for the data center sector for years to come,” the report says.

Thanks to cost and sustainability benefits, solar-plus-storage will become a key element of energy strategies for data centers by 2030, according to the report.

“While some of this energy harvesting will be colocated with data center facilities, much of the energy infrastructure will be installed offsite,” the report says.

Other findings of the report include:

  • AI could represent half of data center workloads by 2030, up from a quarter in 2025.
  • The current five-year “supercycle” of data center infrastructure development may result in global investments of up to $3 trillion by 2030.
  • Nearly 100 gigawatts worth of new data centers will be added between 2026 and 2030, doubling global capacity.

“We’re witnessing the most significant transformation in data center infrastructure since the original cloud migration,” says Matt Landek, who leads JLL’s data center division. “The sheer scale of demand is extraordinary.”

Hyperscalers, which operate massive data centers, are allocating $1 trillion for data center spending between 2024 and 2026, Landek notes, “while supply constraints and four-year grid connection delays are creating a perfect storm that’s fundamentally reshaping how we approach development, energy sourcing, and market strategy.”

Nightpeak Energy's Bocanova Power project in Brazoria County has reached commercial operation. Photo courtesy Nightpeak Energy.

California company launches Tesla Megapack battery project in Houston area

power on

Oakland, California-based Nightpeak Energy announced earlier this month that its 150-megawatt battery storage project in Brazoria County, known as Bocanova Power, is now operating to address Houston’s peak capacity needs.

“This battery storage project will enhance grid reliability in the Alvin area while continuing to support integrating renewable energy,” Cary Perrin, president and CEO of the Northern Brazoria County Chamber of Commerce, said in a news release. “I believe we need energy storage now more than ever for its pivotal role in reducing strain on the grid while meeting fast-growing power demand in Texas and Brazoria County."

The project reached commercial operation in August, according to the release. The project utilizes Tesla's Megapack 2 XL battery storage system, and the facility operates under a long-term power purchase agreement with an undisclosed “investment-grade power purchaser.”

“Bocanova Power demonstrates the speed at which Nightpeak Energy is overcoming complex challenges to energize projects that support America's growing need for affordable, reliable, and secure energy,” Paris Hays, co-founder and CEO/CDO of Nightpeak Energy, added in the news release. “Unprecedented AI data center and manufacturing growth has only accelerated the need for these resources.”

Hays added in the release that the company has plans for more energy infrastructure projects in Texas and in the Western U.S.

Nightpeak Energy develops, owns and operates power plants that support the growing capacity needs of a decarbonized grid. It also owns and operates 240 MW of battery storage and natural gas generation facilities.

The company was founded in 2022 and backed by equity funding of up to $200 million from Dallas-based investment firm Energy Spectrum Capital.

Choose Texas Power has ranked its top electric providers, most affordable green energy providers and more. Photo via unspalsh.

New report rates best electric companies and renewable energy plans

energy plans

Choose Texas Power—a marketplace that allows users to view and compare electricity plans, providers and rates in the state—has compiled its Best Texas Electric Companies report.

The data-driven list considers pricing, providers and consumer trends, and rates for companies listed on its marketplace. The report was updated earlier this month.

Choose Texas Power rated the Texas energy companies using its proprietary data and online reviews, and gave each company a score from zero to five based on customer service, accessibility and plan variety.

Houston-based Express Energy tied for first place on the list with DFW-based TXU Energy, 4Change Energy and Veteran Energy. Eight other Houston-area companies made the 10. The companies all received a rating of 5 out of 5.

The full list includes:

  • Houston-based Gexa Energy (4.9)
  • Irving-based TriEagle Energy (4.9)
  • Houston-based Frontier Utilities (4.8)
  • Spring-based Atlantex Power (4.6)
  • Houston-based Rhythm Energy (4.6)
  • Houston-based Green Mountain Energy (4.5)
  • Houston-based Reliant Energy (4.3)
  • Houston-based Direct Energy (4.2)
  • Houston-based APG&E Energy (4.2)
  • Houston-based Discount Power (4)
  • Plano-based Cirro Energy (4)
  • Fort Worth-based Payless Power (3.9)

Choose Texas Power also broke down the best companies for specific customer needs.

  • Best for affordable green energy: Gexa Energy
  • Best for 100% renewable energy: Rhythm Energy
  • Green energy plans for low usage: Green Mountain Energy
  • Best for smart home upgrades: Discount Power
  • Best for straightforward energy plans: TriEagle Energy
  • Best for plan variety: TXU Energy
  • Best for simple contract terms: Express Energy

Find the full report here.

Daikin has tapped Engie North America to provide clean electricity for its Texas facilities, including the massive Daikin Texas Technology Park. Photo courtesy Daikin.

Daikin to run massive Houston-area campus on solar power through new Engie partnership

power deal

Japan-based HVAC manufacturer Daikin has struck a five-year deal with Houston-based Engie North America to fully power its Texas facilities with renewable energy.

The deal includes Daikin Texas Technology Park (DTTP), home to the company’s North American headquarters and its largest factory (and one of the largest factories in the world). The more than $500 million, 4.2 million-square-foot campus sits on nearly 500 acres in Waller.

The technology park, which held its grand opening in 2017, combines manufacturing, engineering, logistics, marketing, and sales operations for Amana, Daikin and Goodman HVAC products. Earlier this year, Daikin installed a solar array at DTTP to power its central chiller plant.

Under the new agreement, Daikin will pay Engie North America for clean electricity from the 260-megawatt Impact Solar Farm, located northeast of Dallas-Fort Worth in Lamar County. Engie North America is a subsidiary of French utility company Engie.

The $250 million solar farm, which London-based Lightsource BP started operating in 2021, produces about 450,000 megawatt-hours of solar power each year. Lightsource, which has an office in Austin, develops, finances and operates utility-scale renewable energy projects. Lightsource BP is a subsidiary of energy giant BP, whose North American headquarters is in Houston.

“This initiative represents a major step forward in aligning our operations with Daikin’s long-term sustainability goals,” Mike Knights, senior vice president of procurement at Daikin, said in a release.

Daikin aims to make its DTTP a net-zero factory by 2030.

Fervo Energy has tapped Baker Hughes to supply technology to five power plants at Cape Station, its flagship geothermal power generation project in Utah. Photo courtesy Fervo Energy.

Fervo Energy selects Baker Hughes to supply geothermal tech for power plants

geothermal deal

Houston-based geothermal energy startup Fervo Energy has tapped Houston-based energy technology company Baker Hughes to supply geothermal equipment for five Fervo power plants in Utah.

The equipment will be installed at Fervo’s Cape Station geothermal power project near Milford, Utah. The project’s five second-phase, 60-megawatt plants will generate about 400 megawatts of clean energy for the grid.

Financial terms of the deal weren’t disclosed.

“Baker Hughes’ expertise and technology are ideal complements to the ongoing progress at Cape Station, which has been under construction and successfully meeting project milestones for almost two years,” says Tim Latimer, co-founder and CEO of Fervo. “Fervo designed Cape Station to be a flagship development that's scalable, repeatable, and a proof point that geothermal is ready to become a major source of reliable, carbon-free power in the U.S.”

Cape Station is permitted to deliver about two gigawatts of geothermal power. The first phase of the project will supply 100 megawatts of power to the grid beginning in 2026. The second phase is scheduled to come online by 2028.

“Geothermal power is one of several renewable energy sources expanding globally and proving to be a vital contributor to advancing sustainable energy development,” Baker Hughes Chairman and CEO Lorenzo Simonelli says. “By working with a leader like Fervo Energy and leveraging our comprehensive portfolio of technology solutions, we are supporting the scaling of lower-carbon power solutions that are integral to meet growing global energy demand.”

Founded in 2017, Fervo is now a unicorn, meaning its valuation as a private company has surpassed $1 billion. In March, Axios reported Fervo is targeting a $2 billion to $4 billion valuation in an IPO.

Over the course of eight years, Fervo has raised almost $1 billion in capital, including equity and debt financing. This summer, the company secured a $205.5 million round of capital.

Texas must confront the growing gap between renewable potential and real-time reliability. Photo via Getty Images

Expert on powering Texas: The promise and challenges of renewable energy

Guest Column

Texas leads the nation in wind and solar energy, but that leadership is being tested as a surge in project cancellations raises new concerns about the future of renewables in the state.

While Texas clean energy has grown significantly in recent years, solar and wind often fall short of meeting peak electricity demand. As extreme weather, rising demand, and project cancellations strain the grid, Texas must confront the growing gap between renewable potential and real-time reliability.

Solar and Wind Energy

Solar generation in the Lone Star State has grown substantially over the past decade. The Texas solar industry is estimated to employ over 12,000 Texans and is contributing billions in local tax revenue and landowner income, and solar and storage are the largest sources of new energy on the Texas grid.

With a significant number of sunny days, Texas’ geography also enables it to be among the states with the greatest energy potential for solar power generation. Further moving to advance the use of solar energy generation, the 89th Texas legislature passed SB 1202 which accelerates the permitting process for home solar and energy storage installations. SB 1202 empowers homeowners to strengthen their own energy security and supports greater grid resilience across the state.

Texas has also led the United States in wind energy production for more than 17 years, with 239 wind-related projects and over 15,300 wind turbines, which is more than any other state. The economic impact of wind energy in Texas is substantial, with the industry contributing $1.7 billion a year to the state’s gross domestic product. With wind electric power generation jobs offering an average annual wage of $109,826, the growing sector provides lucrative employment opportunities.

However, solar and wind currently struggle to meet Texas’ peak electricity demand from 5 pm to 7 pm — a time when millions of residents return home, temperatures remain high and air conditioner use surges. Solar generation begins to decline just as demand ramps up, and wind production is often inconsistent during these hours. Without sufficient long-duration storage or dispatchable backup power, this mismatch between supply and demand presents a significant reliability risk — one that becomes especially urgent during heat waves and extreme weather events, as seen during ERCOT conservation alerts.

Geothermal Energy

Geothermal energy uses heat from beneath the Earth’s surface to provide reliable, low-emission power with minimal land use and no fuel transport. Though it currently supplies a small share of energy, Texas is emerging as a leader in its development, supported by state leaders, industry, and environmentalists. During the 89th legislative session, Texas passed HB 3240 to create a Geothermal Energy Production Policy Council, set to begin work on September 1, 2025.

In 2024, Sage Geosystems was selected to develop geothermal projects at the Naval Air Station in Corpus Christi, expanding its work with the Department of Defense. In partnership with the Environmental Security Technology Certification Program, Sage is using its proprietary Geopressured Geothermal Systems technology to evaluate the potential for geothermal to be a source of clean and consistent energy at the base.

One limitation of geothermal energy is location. Deep drilling is costly, and areas with high water tables, like some coastal regions, may not be viable.

Hydroelectric Energy

While hydropower plays a minor role in Texas’ energy mix, it is still an essential energy source. Its output depends on water availability, which can be affected by seasonal and long-term changes like droughts.

Texas has 26 hydropower plants with a total capacity of nearly 738 megawatts, serving about 2.9 million people as of 2019. Harris County holds 43% of all hydropower generation jobs in the state, and in 2021, hydroelectric power generation contributed $700 million to Texas’ gross domestic product.

Federal funding is helping expand hydropower in Texas. The Southwestern Power Administration has committed about $103 million to support infrastructure, including $32 million for upgrades to Central Texas’s Whitney Dam. The 2021 Inflation Reduction Act added $369 billion in tax credits for clean energy, supporting dam retrofits nationwide. In 2022, the Department of Energy launched over $28 million in new funding through the Infrastructure Law to help meet national clean energy goals by 2035 and carbon neutrality by 2050.

Tidal Energy

Driven by the moon and sun, tidal energy is predictable but limited to coastal areas with strong tides. Although Texas has modest tidal potential, research is ongoing to optimize it. Texas A&M University is developing a floating test platform for hybrid renewable systems, integrating tidal, wave, wind, and solar energy. In addition, St. Mary’s University in San Antonio is prototyping small-scale tidal turbines using 3D printing technology.

While commercial tidal power remains in the research phase, the state’s offshore capabilities, engineering talent, and growing university-led innovation could make it a player in hybrid marine renewable systems. Floating platforms that integrate wave, tide, solar, and wind offer a compelling vision for offshore power generation suited to Texas’ unique coastal conditions.

Biomass Energy

Biomass energy is the largest renewable source worldwide, providing 55% of renewables and over 6% of global energy. While reliable, it can be less efficient, sometimes using more energy to burn the organic matter than it produces, and demand may exceed supply.

In Texas, biomass is a nominal part of the state’s energy portfolio. However, substantial research is being conducted by Texas A&M University to attempt to convert algae and food waste into a cost-efficient source of biomass material. In addition, UK-based biomass and renewable energy company Drax opened its North American headquarters in Houston, which created more than 100 new jobs in Texas’ renewable energy industry.

It’s clear that renewable energy is playing an increasingly important role in shaping Texas’ energy future. But the road ahead demands a realistic view: while these sources can reduce emissions and diversify our generation mix, they do not yet solve for peak load reliability — especially during the critical 5 pm to 7 pm window when grid stress is highest.

Meeting that challenge will require not just investment in renewables, but also innovation in grid-scale storage, flexible generation, market reform and consumer programs. A diversified, resilient energy portfolio — one that includes renewables and reliable dispatchable sources — will be the key to ensuring that Texas remains powered, prepared and prosperous for generations to come.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston quantum simulator research reveals clues for solar energy conversion

energy flow

Rice University scientists have used a programmable quantum simulator to mimic how energy moves through a vibrating molecule.

The research, which was published in Nature Communications last month, lets the researchers watch and control the flow of energy in real time and sheds light on processes like photosynthesis and solar energy conversion, according to a news release from the university.

The team, led by Rice assistant professor of physics and astronomy Guido Pagano, modeled a two-site molecule with one part supplying energy (the donor) and the other receiving it (the acceptor).

Unlike in previous experiments, the Rice researchers were able to smoothly tune the system to model multiple types of vibrations and manipulate the energy states in a controlled setting. This allowed the team to explore different types of energy transfer within the same platform.

“By adjusting the interactions between the donor and acceptor, coupling to two types of vibrations and the character of those vibrations, we could see how each factor influenced the flow of energy,” Pagano said in the release.

The research showed that more vibrations sped up energy transfer and opened new paths for energy to move, sometimes making transfer more efficient even with energy loss. Additionally, when vibrations differed, efficient transfer happened over a wider range of donor–acceptor energy differences.

“The results show that vibrations and their environment are not simply background noise but can actively steer energy flow in unexpected ways,” Pagano added.

The team believes the findings could help with the design of organic solar cells, molecular wires and other devices that depend on efficient energy or charge transfer. They could also have an environmental impact by improving energy harvesting to reduce energy losses in electronics.

“These are the kinds of phenomena that physical chemists have theorized exist but could not easily isolate experimentally, especially in a programmable manner, until now,” Visal So, a Rice doctoral student and first author of the study, added in the release.

The study was supported by The Welch Foundation,the Office of Naval Research, the National Science Foundation CAREER Award, the Army Research Office and the Department of Energy.

The EPA is easing pollution rules — here’s how it’s affecting Texas

In the news

The first year of President Trump’s second term has seen an aggressive rollback of federal environmental protections, which advocacy groups fear will bring more pollution, higher health risks, and less information and power for Texas communities, especially in heavily industrial and urban areas.

Within Trump’s first 100 days in office, his new Environmental Protection Agency administrator, Lee Zeldin, announced a sweeping slate of 31 deregulatory actions. The list, which Zeldin called the agency’s “greatest day of deregulation,” targeted everything from soot standards and power plant pollution rules to the Endangerment Finding, the legal and scientific foundation that obligates the EPA to regulate climate-changing pollution under the Clean Air Act.

Since then, the agency froze research grants, shrank its workforce, and removed some references to climate change and environmental justice from its website — moves that environmental advocates say send a clear signal: the EPA’s new direction will come at the expense of public health.

Cyrus Reed, conservation director of the Lone Star Chapter of the Sierra Club, said Texas is one of the states that feels EPA policy changes directly because the state has shown little interest in stepping up its environmental enforcement as the federal government scales back.

“If we were a state that was open to doing our own regulations there’d be less impact from these rollbacks,” Reed said. “But we’re not.”

“Now we have an EPA that isn’t interested in enforcing its own rules,” he added.

Richard Richter, a spokesperson at the state’s environmental agency, Texas Commission on Environmental Quality, said in a statement that the agency takes protecting public health and natural resources seriously and acts consistently and quickly to enforce federal and state environmental laws when they’re violated.

Methane rules put on pause

A major EPA move centers on methane, a potent greenhouse gas that traps heat far more efficiently than carbon dioxide over the short term. It accounts for roughly 16% of global greenhouse gas emissions and is a major driver of climate change. In the U.S., the largest source of methane emissions is the energy sector, especially in Texas, the nation’s top oil and gas producer.

In 2024, the Biden administration finalized long-anticipated rules requiring oil and gas operators to sharply reduce methane emissions from wells, pipelines, and storage facilities. The rule, developed with industry input, targeted leaks, equipment failures, and routine flaring, the burning off of excess natural gas at the wellhead.

Under the rule, operators would have been required to monitor emissions, inspect sites with gas-imaging cameras for leaks, and phase out routine flaring. States are required to come up with a plan to implement the rule, but Texas has yet to do so. Under Trump’s EPA, that deadline has been extended until January 2027 — an 18-month postponement.

Texas doesn’t have a rule to capture escaping methane emissions from energy infrastructure. Richter, the TCEQ spokesperson, said the agency continues to work toward developing the state plan.

Adrian Shelley, Texas director of the watchdog group Public Citizen, said the rule represented a rare moment of alignment between environmentalists and major oil and gas producers.

“I think the fossil fuel industry generally understood that this was the direction the planet and their industry was moving,” he said. Shelley said uniform EPA rules provided regulatory certainty for changes operators saw as inevitable.

Reed, the Sierra Club conservation director, said the delay of methane rules means Texas still has no plan to reduce emissions, while neighboring New Mexico already has imposed its own state methane emission rules that require the industry to detect and repair methane leaks and ban routine venting and flaring.

These regulations have cut methane emissions in the New Mexico portion of the Permian Basin — the oil-rich area that covers West Texas and southeast New Mexico — to half that of Texas, according to a recent data analysis by the Environmental Defense Fund. That’s despite New Mexico doubling production since 2020.

A retreat from soot standards

Fine particulate matter or PM 2.5, one of six pollutants regulated under the Clean Air Act, has been called by researchers the deadliest form of air pollution.

In 2024, the EPA under President Biden strengthened air rules for particulate matter by lowering the annual limit from 12 to 9 micrograms per cubic meter. It was the first update since 2012 and one of the most ambitious pieces of Biden’s environmental agenda, driven by mounting evidence that particulate pollution is linked to premature death, heart disease, asthma, and other respiratory illnesses.

After the rule was issued, 24 Republican-led states, including Kentucky and West Virginia, sued to revert to the weaker standard. Texas filed a separate suit asking to block the rule’s recent expansion.

State agencies are responsible for enforcing the federal standards. The TCEQ is charged with creating a list of counties that exceed the federal standard and submitting those recommendations to Gov. Greg Abbott, who then finalizes the designations and submits them to the EPA.

Under the 9 microgram standard, parts of Texas, including Dallas, Harris (which includes Houston), Tarrant (Fort Worth), and Bowie (Texarkana) counties, were in the process of being designated nonattainment areas — which, when finalized, would trigger a legal requirement for the state to develop a plan to clean up the air.

That process stalled after Trump returned to office. Gov. Greg Abbott submitted his designations to EPA last February, but EPA has not yet acted on his designations, according to Richter, the TCEQ spokesperson.

In a court filing last year, the Trump EPA asked a federal appeals court to vacate the stricter standard, bypassing the traditional notice and comment administrative process.

For now, the rule technically remains in effect, but environmental advocates say the EPA’s retreat undermines enforcement of the rule and signals to polluters that it may be short-lived.

Shelley, with Public Citizen, believes the PM2.5 rule would have delivered the greatest health benefit of any EPA regulation affecting Texas, particularly through reductions in diesel pollution from trucks.

“I still hold out hope that it will come back,” he said.

Unraveling the climate framework

Beyond individual pollutants, the Trump EPA has moved to dismantle the federal architecture for addressing climate change.

Among the proposals is eliminating the Greenhouse Gas Reporting Program, which requires power plants, refineries, and oil and gas suppliers to report annual emissions. The proposal has drawn opposition from both environmental groups and industry, which relies on the data for planning and compliance.

Colin Leyden, Texas state director and energy lead at the nonprofit Environmental Defense Fund, said eliminating the program could hurt Texas industry. If methane emissions are no longer reported, then buyers and investors of natural gas, for example, won’t have an official way to measure how much methane pollution is associated with that gas, according to Leyden. That makes it harder to judge how “clean” or “climate-friendly” the product is, which international buyers are increasingly demanding.

“This isn’t just bad for the planet,” he said. “It makes the Texas industry less competitive.”

The administration also proposed last year rescinding the Endangerment Finding, issued in 2009, which obligates the EPA to regulate climate pollution. Most recently, the EPA said it will stop calculating how much money is saved in health care costs as a result of air pollution regulations that curb particulate matter 2.5 and ozone, a component of smog. Both can cause respiratory and health problems.

Leyden said tallying up the dollar value of lives saved when evaluating pollution rules is a foundational principle of the EPA since its creation.

“That really erodes the basic idea that (the EPA) protects health and safety and the environment,” he said.

___

This story was originally published by The Texas Tribune and distributed through a partnership with The Associated Press.

New report predicts major data center boom in Texas by 2028

data analysis

Data centers are proving to be a massive economic force in Texas.

For instance, a new report from clean energy company Bloom Energy predicts Texas will see a 142 percent increase in its market share for data centers from 2025 to 2028. That would be the highest increase of any state.

Bloom Energy expects Texas to exceed 40 gigawatts of data-center capacity by 2028, representing a nearly 30 percent share of the U.S. market. A typical AI data center consumes 1 to 2 gigawatts of energy.

“Data center and AI factory developers can’t afford delays,” Natalie Sunderland, Bloom Energy’s chief marketing officer, said in the report. “Our analysis and survey results show that they’re moving into power‑advantaged regions where capacity can be secured faster — and increasingly designing campuses to operate independently of the grid.”

“The surge in AI demand creates a clear opportunity for states that can adapt to support large-scale AI deployments at speed,” Sunderland adds.

Further evidence of the data center explosion in Texas comes from ConstructConnect, a provider of data and software for contractors and manufacturers. ConstructConnect reported that in the 12-month span through November 2025, data-center construction starts in Texas accounted for $11 billion in spending. At $12.5 billion, only Louisiana surpassed the Texas total.

Capital expenses for U.S. data centers were expected to surpass $425 billion last year, according to ratings agency S&P Global.

ConstructConnect also reports that Texas is among five states collectively grabbing 80 percent of potential data center construction starts. Currently, Texas hosts around 400 data centers, with close to 60 of them in the Houston market.

A large pool of data-center construction spending in Texas is flowing from Google, which announced in November that it would earmark $40 billion for new AI data centers in the state.

“Texas leads in AI and tech innovation,” Gov. Greg Abbott proclaimed when the Google investment was unveiled.

Other studies and reports lay out just how much data centers are influencing economic growth in the Lone Star State:

  • A study by Texas Royalty Brokers indicates Texas leads the U.S. with 17 clusters of AI data centers. The study measured the density of AI data centers by counting the number of graphics processing units (GPUs) installed in those clusters. GPUs are specialized chips built to run AI models and perform complex calculations.
  • Citing data from construction consulting company FMI, The Wall Street Journal reported that spending on construction of data centers is expected to rise 23 percent in 2026 compared with last year. Much of that construction spending will happen in Texas. In the 12 months through November 2025, the average data center cost $597 million, according to ConstructConnect.
  • Data published in 2025 by commercial real estate services company Cushman & Wakefield shows three Texas markets — Austin, Dallas and San Antonio — boast the lowest construction costs for data centers among the 19 U.S. markets that were analyzed. The mid-range of costs in that trio of markets is roughly $10.65 million per megawatt. Houston isn’t included in the data.

Although Houston isn’t cited in the Cushman & Wakefield data, it nonetheless is playing a major role in the data-center boom. Houston-area energy giants Chevron and ExxonMobil are chasing opportunities to supply natural gas as a power source for data centers, for example.

“As Houston rapidly evolves into a hub for AI, cloud computing, and data infrastructure, the city is experiencing a surge in data-center investments driven by its unique position at the intersection of energy, technology, and innovation,” says the Greater Houston Partnership.