global expansion

Houston biotech company continues to expand in Brazil with new research partner

Cemvita has partnered with Brazilian sustainable research institution REMA. Photo courtesy of Cemvita

Houston biotech company Cemvita has announced a strategic collaboration with Brazilian sustainable research institution REMA.

The move aims to promote Cemvita’s platform for evaluating and testing carbon waste streams as feedstocks for producing sustainable oil, according to the company.

Cemvita utilizes synthetic biology to transform carbon emissions into valuable bio-based chemicals. REMA professors Marcio Schneider and Admir Giachini have previously worked with Cemvita’s CTO, Marcio Busi da Silva, for approximately 20 years.

“This long-standing partnership reflects not only our strong professional ties, but also our shared commitment to advancing science and technology for a more sustainable future," Busi da Silva said in a news release.

REMA’s center is based in Florianópolis and is affiliated with the Federal University of Santa Catarina, which develops cost-effective environmental and technological solutions in automation, chemical engineering, biotech, environmental engineering and agronomy.

“Partnering with REMA in Florianópolis represents a significant step forward in our mission to transform carbon waste into valuable resources,” Tara Karimi, chief science and sustainability officer of Cemvita, said in a news release. “Together, we will enhance our platform’s capabilities, leveraging REMA’s expertise to evaluate and utilize diverse waste streams for sustainable oil production, further advancing the circular bioeconomy in Brazil and beyond.”

Cemvita recently expanded to Brazil to capitalize on the country’s progressive regulatory framework, which includes Brazil’s Fuel of the Future Law. The expansion also aimed to coincide with the 2025 COP30, the UN’s climate change conference, which will be hosted in Brazil in November.

Cemvita became capable of generating 500 barrels per day of sustainable oil from carbon waste at its first commercial plant in 2024, and as a result, Cemvita quadrupled output at its Houston plant. The company originally planned to reach this milestone in 2029.

Also in 2025, Cemvita announced a partnership with Brazil-based Be8 that focused on converting biodiesel byproduct glycerin into low-carbon feedstock to help support the decarbonization of the aviation sector. Cemvita agreed to a 20-year contract that specified it would supply up to 50 million gallons of SAF annually to United Airlines in 2023.

Trending News

 

A View From HETI

A team led by M.A.S.R. Saadi and Muhammad Maksud Rahman has developed a biomaterial that they hope could be used for the “next disposable water bottle." Photo courtesy Rice University.

Collaborators from two Houston universities are leading the way in engineering a biomaterial into a scalable, multifunctional material that could potentially replace plastic.

The research was led by Muhammad Maksud Rahman, an assistant professor of mechanical and aerospace engineering at the University of Houston and an adjunct assistant professor of materials science and nanoengineering at Rice University. The team shared its findings in a study in the journal Nature Communications earlier this month. M.A.S.R. Saadi, a doctoral student in material science and nanoengineering at Rice, served as the first author.

The study introduced a biosynthesis technique that aligns bacterial cellulose fibers in real-time, which resulted in robust biopolymer sheets with “exceptional mechanical properties,” according to the researchers.

Biomaterials typically have weaker mechanical properties than their synthetic counterparts. However, the team was able to develop sheets of material with similar strengths to some metals and glasses. And still, the material was foldable and fully biodegradable.

To achieve this, the team developed a rotational bioreactor and utilized fluid motion to guide the bacteria fibers into a consistent alignment, rather than allowing them to align randomly, as they would in nature.

The process also allowed the team to easily integrate nanoscale additives—like graphene, carbon nanotubes and boron nitride—making the sheets stronger and improving the thermal properties.

“This dynamic biosynthesis approach enables the creation of stronger materials with greater functionality,” Saadi said in a release. “The method allows for the easy integration of various nanoscale additives directly into the bacterial cellulose, making it possible to customize material properties for specific applications.”

Ultimately, the scientists at UH and Rice hope this discovery could be used for the “next disposable water bottle,” which would be made by biodegradable biopolymers in bacterial cellulose, an abundant resource on Earth.

Additionally, the team sees applications for the materials in the packaging, breathable textiles, electronics, food and energy sectors.

“We envision these strong, multifunctional and eco-friendly bacterial cellulose sheets becoming ubiquitous, replacing plastics in various industries and helping mitigate environmental damage,” Rahman said the release.

Trending News