global expansion

Houston biotech company continues to expand in Brazil with new research partner

Cemvita has partnered with Brazilian sustainable research institution REMA. Photo courtesy of Cemvita

Houston biotech company Cemvita has announced a strategic collaboration with Brazilian sustainable research institution REMA.

The move aims to promote Cemvita’s platform for evaluating and testing carbon waste streams as feedstocks for producing sustainable oil, according to the company.

Cemvita utilizes synthetic biology to transform carbon emissions into valuable bio-based chemicals. REMA professors Marcio Schneider and Admir Giachini have previously worked with Cemvita’s CTO, Marcio Busi da Silva, for approximately 20 years.

“This long-standing partnership reflects not only our strong professional ties, but also our shared commitment to advancing science and technology for a more sustainable future," Busi da Silva said in a news release.

REMA’s center is based in Florianópolis and is affiliated with the Federal University of Santa Catarina, which develops cost-effective environmental and technological solutions in automation, chemical engineering, biotech, environmental engineering and agronomy.

“Partnering with REMA in Florianópolis represents a significant step forward in our mission to transform carbon waste into valuable resources,” Tara Karimi, chief science and sustainability officer of Cemvita, said in a news release. “Together, we will enhance our platform’s capabilities, leveraging REMA’s expertise to evaluate and utilize diverse waste streams for sustainable oil production, further advancing the circular bioeconomy in Brazil and beyond.”

Cemvita recently expanded to Brazil to capitalize on the country’s progressive regulatory framework, which includes Brazil’s Fuel of the Future Law. The expansion also aimed to coincide with the 2025 COP30, the UN’s climate change conference, which will be hosted in Brazil in November.

Cemvita became capable of generating 500 barrels per day of sustainable oil from carbon waste at its first commercial plant in 2024, and as a result, Cemvita quadrupled output at its Houston plant. The company originally planned to reach this milestone in 2029.

Also in 2025, Cemvita announced a partnership with Brazil-based Be8 that focused on converting biodiesel byproduct glycerin into low-carbon feedstock to help support the decarbonization of the aviation sector. Cemvita agreed to a 20-year contract that specified it would supply up to 50 million gallons of SAF annually to United Airlines in 2023.

Trending News

A View From HETI

A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants.

Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team released two significant publications that made significant strides relating to carbon capture processes. The first, published in Nature Communications, introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process. Another, featured on the cover of ES&T Engineering, demonstrated a vanadium redox flow system capable of both capturing carbon and storing renewable energy.

“These publications reflect our group’s commitment to fundamental electrochemical innovation and real-world applicability,” Rahimi said in a news release. “From membraneless systems to scalable flow systems, we’re charting pathways to decarbonize hard-to-abate sectors and support the transition to a low-carbon economy.”

According to the researchers, the “A Membraneless Electrochemically Mediated Amine Regeneration for Carbon Capture” research paper marked the beginning of the team’s first focus. The research examined the replacement of costly ion-exchange membranes with gas diffusion electrodes. They found that the membranes were the most expensive part of the system, and they were also a major cause of performance issues and high maintenance costs.

The researchers achieved more than 90 percent CO2 removal (nearly 50 percent more than traditional approaches) by engineering the gas diffusion electrodes. According to PhD student and co-author of the paper Ahmad Hassan, the capture costs approximately $70 per metric ton of CO2, which is competitive with other innovative scrubbing techniques.

“By removing the membrane and the associated hardware, we’ve streamlined the EMAR workflow and dramatically cut energy use,” Hassan said in the news release. “This opens the door to retrofitting existing industrial exhaust systems with a compact, low-cost carbon capture module.”

The second breakthrough, published by PhD student Mohsen Afshari, displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge. The results suggested that the technology could potentially provide carbon removal and grid balancing when used with intermittent renewables, such as solar or wind power.

“Integrating carbon capture directly into a redox flow battery lets us tackle two challenges in one device,” Afshari said in the release. “Our front-cover feature highlights its potential to smooth out renewable generation while sequestering CO2.”

Trending News