the view from heti

Meet Cemvita's new VP of industrial biotechnology

Dr. Nádia Skorupa Parachin has been named Cemvita’s new VP of Industrial Biotechnology. Photo via HETI

Houston-based biosolutions company Cemvita has announced a new addition to its leadership team that will further advance the company’s mission to transform the sustainable oil industry.

Dr. Nádia Skorupa Parachin has been named Cemvita’s new VP of Industrial Biotechnology. Joining Cemvita from Ginkgo Bioworks in Boston, where she held the role of Senior Director of Principal Organism Engineering, Parachin brings extensive expertise in synthetic biology, bioprocess development and strategic leadership.

Prior to her tenure at Ginkgo Bioworks, she spent nine years as a professor at the Universidade de Brasília and co-founded the Brazilian start-up Integra Bioprocessos, which is dedicated to developing biotechnological pathways that yield high-value products.

Parachin’s addition to the Cemvita team coincides with the company’s intensified focus on commercializing its capability to manufacture bio-oil from carbon waste. Cemvita has recently achieved a major milestone, now producing up to 500 barrels of sustainable oil per day—reaching the target years ahead of the original projection set for 2029. In her role, Parachin will continue their innovative work, advancing microbial productivity efficiency.

“Cemvita has built an incredible waste carbon to oil process by training microbes with peak efficiency,” said Cemvita CEO Moji Karimi in a statement. “Adding Nadia’s experience is the natural next step in commercializing this remarkable science. Her background prepared her to bring the best out of the scientists at the inflection point of commercialization – really bringing things to life.”

Echoing this enthusiasm, Parachin expressed her excitement about her new role at Cemvita.

“I’ve joined Cemvita to lead the team working on developing and improving the technologies for our bio-oil production,” she stated. “It’s a fantastic moment as we’re poised to take our prototyping to the next level, and all under the innovative direction of our co-founder, Tara Karimi. We will be bringing something truly remarkable to market and ensuring its cost effective.”

Parachin’s role comes at a strategic time, following Cemvita’s recent announcement of a significant partnership with United Airlines. Under this agreement, Cemvita will provide United with up to 50 million gallons of Sustainable Aviation Fuel (SAF) derived from CO2 annually over the next 20 years. The company’s energy transition subsidiary, Gold H2, has also recently formed a significant partnership with ChampionX. This collaboration aims to advance Gold H2’s technology designed to produce hydrogen from depleted or uneconomical oil reservoirs.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Trending News

A View From HETI

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

Trending News