Quidnet Energy has entered into a strategic partnership with Hunt Energy Network, and the two Texas companies will work on a build-transfer program for 300 MW of storage projects in Texas. Photo via quidnetenergy.com

A Houston-based company that's developing long-duration energy storage solutions announced a $10 million investment and partnership with a Texas corporation.

Quidnet Energy has entered into a strategic partnership with Hunt Energy Network, an affiliate of Dallas-based Hunt Energy that develops and operates distributed energy resources. The two Texas companies will work on a build-transfer program for 300 MW of storage projects that uses Quidnet's Geomechanical Energy Storage technology in the Electric Reliability Council of Texas (ERCOT) grid operating region.

“Hunt Energy Network brings an extensive and proven track record across diverse energy businesses, making them an ideal partner to address the need for large-scale, long-duration energy storage in Texas,” Joe Zhou, CEO of Quidnet Energy, says in a news release. “We’re thrilled to have them as an investor, partner, and board member, and we look forward to jointly advancing the deployment of energy storage solutions, particularly in regions like ERCOT where the need is most pressing.”

Todd Benson, the chief innovation officer of Hunt Energy, will join Quidnet's board of directors as a part of the partnership.

“Quidnet Energy's GES technology presents a unique opportunity to revolutionize energy storage, and we’re excited to invest in a solution that purposefully transforms existing resources to expand access to long-duration storage,” adds Pat Wood, III, CEO of HEN. “ERCOT's growing supply of renewable energy makes this region ideal for the deployment of our technology, and we’re pleased to work with another Texas innovator to build a more resilient grid for all ERCOT customers.”

Quidnet’s technology, which can provide over 10 hours of storage, uses drilling and hydropower machinery to store renewable energy. Essentially, the company, founded in 2013, is using water storage to power carbon-free electric grid approach to energy.

One year ago, Quidnet secured $10 million from the U.S. Department of Energy Advanced Research Projects Agency-Energy, or ARPA-E. Just a few months after that, the company received an additional $2 million from the DOE for its project, entitled "Energy Storage Systems for Overpressure Environments," which is taking place in East Texas.

At Houston event, the Department of Energy’s Advanced Research Projects Agency-Energy announced $100 million in cleantech funding. Photos by Jeff Fitlow/Rice University

National agency announces $100M in funding for energy advancement at Houston event

seeing green

Rice University played host to the first-of-its-kind event from the Department of Energy’s Advanced Research Projects Agency-Energy, or ARPA-E, earlier this month in which the governmental agency announced $100 million in funding for its SCALEUP program.

Dubbed “ARPA-E on the Road: Houston,” the event welcomed more than 100 energy innovators to the Hudspeth Auditorium in Rice’s Anderson-Clarke Center on June 8. Evelyn Wang, director of ARPA-E, announced the funding, which represents the third installment from the agency for its program SCALEUP, or Seeding Critical Advances for Leading Energy technologies with Untapped Potential, which supports the commercialization of clean energy technology.

The funding is awarded to previous ARPA-E awardees with a "viable road to market" and "ability to attract private sector investments," according to a statement from the Department of Energy. Previous funding was granted in 2019 and 2021.

"ARPA-E’s SCALEUP program has successfully demonstrated what can happen when technical experts are empowered with the commercialization support to develop a strong pathway to market” Wang said. “I’m excited that we are building on the success of this effort with the third installment of SCALEUP, and I look forward to what the third cohort of teams accomplish.”

Rice Vice President for Research Ramamoorthy Ramesh also spoke at the event on how Rice is working to make Houston a leader in energy innovation. Joe Zhou, CEO of Houston-based Quidnet Energy, also spoke on a panel about how ARPA-E funding benefited his company along with Oregon-based Onboard Dynamics’s CEO Rita Hansen and Massachusetts-based Quaise Energy’s CEO Carlos Araque.

Attendees were able to ask questions to Wang and ARPA-E program directors about the agency’s funding approach and other topics at the event.

Houston energy innovators have benefited from programs like SCALEUP.

Quidnet Energy received $10 million in funding from ARPA-E as part of its SCALEUP program in 2022. The company's technology can store renewable energy for long periods of time in large quantities.

In January, Houston-based Zeta Energy also announced that it has secured funding from ARPA-E. The $4 million in funding came from the agency's Electric Vehicles for American Low-Carbon Living, or EVs4ALL, program. Zeta Energy is known for its lithium sulfur batteries

Houston-based Quidnet Energy has secured funding from a Department of Energy program. Image via quidnetenergy.com

Houston energy storage startup secures $10M in federal funding

seeing green

A Houston-based company that's got a solution to renewable energy storage secured funding from a federal entity.

The U.S. Department of Energy Advanced Research Projects Agency-Energy, or ARPA-E, is granting Quidnet Energy $10 million in funding, the Houston company announced in November. The funding is a part of the ARPA-E Seeding Critical Advances for Leading Energy technologies with Untapped Potential, the SCALEUP program. This initiative is aimed at providing funding to previous ARPA-E teams "that have been determined to be feasible for widespread deployment and commercialization domestically," per a news release.

“We’re honored that ARPA-E has selected Quidnet Energy as an awardee of the SCALEUP program,” says Joe Zhou, CEO of Quidnet Energy, in the release. “This funding will support continued work on our Geomechanical Pumped Storage (GPS) project with CPS Energy, which will demonstrate the benefits of using proven pumped hydro technology to create a long-duration energy storage resource that doesn’t require mountainous terrain. We look forward to continuing our partnership with CPS Energy and thank ARPA-E for acknowledging the potential of GPS for long-duration storage.”

The company's technology can store renewable energy for long periods of time in large quantities. The process includes storing pressurized water underground and, when the stored energy is needed, the water propels hydroelectric turbines and produces the electricity to support the grid at a fraction of the cost, per the news release. The concept is similar to existing gravity-powered pumped storage, but with less land required.

The fresh funding will be used toward Quidnet Energy’s ongoing project with San Antonio-based utilitary provider CPS Energy. This collaboration is scaling the company's GPS to a 1 MW/10 MWh commercial system, per the release, that will provide CPS Energy with over 10 hour long-duration energy storage system.

In 2020, Quidnet closed its $10 million series B financing round and secured a major contract with the New York State Energy Development Authority. The series B round included participation from Bill Gates-backed Breakthrough Energy Ventures and Canada-based Evok Innovations, which both previously invested in the company, as well as new investors Trafigura and The Jeremy and Hannelore Grantham Environmental Trust.

------

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Wind and solar supplied over a third of ERCOT power, report shows

power report

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA).

The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024.

Together, wind and solar supplied 36 percent of ERCOT’s electricity in the first nine months of 2025.

Heavier reliance on wind and solar power comes amid greater demand for ERCOT electricity. In the first nine months of 2025, ERCOT recorded the fastest growth in electricity demand (5 percent) among U.S. power grids compared with the same period last year, according to the report.

“ERCOT’s electricity demand is forecast to grow faster than that of any other grid operator in the United States through at least 2026,” the report says.

EIA forecasts demand for ERCOT electricity will climb 14 percent in the first nine months of 2026 compared with the same period this year. This anticipated jump coincides with a number of large data centers and cryptocurrency mining facilities coming online next year.

The ERCOT grid covers about 90 percent of Texas’ electrical load.

Micro-nuclear reactor to launch next year at Texas A&M innovation campus

nuclear pilot

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”