c-suite switchup

Houston-based microgrid company names new COO

Paul Froutan has been named COO of Enchanted Rock. Photo via Enchanted Rock

Houston-based Enchanted Rock, which provides dual-purpose microgrids, announced that Paul Froutan has been named COO.

Froutan joined Enchanted Rock in 2022 as the chief technology officer. He will replace Thais Grossi, who served in the role for nearly eight years.

Froutan previously led Google's Global Data Center Operations and was responsible for managing Google's worldwide data center and server operations. He also served as the vice president of engineering for Rackspace Hosting, and holds a Bachelor of Science in mechanical engineering and an MBA from the University of Texas at Austin.

“Since joining Enchanted Rock, I've been impressed with the team's vast knowledge of natural gas microgrids and how that has been applied to deliver both customer resiliency and financial value," Froutan says in a news release. "Taking the next step and bringing technology, EPC, and O&M together under one umbrella will further improve our innovation feedback loop, which benefits our customers and the communities that rely on our services."

In his previous role with the company, Froutan was responsible for GraniteEcoSystem, Enchanted Rock's microgrid management software, and the launch of the company's advanced natural gas generator initiative. Froutan will lead the product engineering, EPC, and operations and maintenance teams.

"Paul has helped take the technology and intelligence powering our solutions to the next level, and we are pleased that he has accepted this expanded role," Thomas McAndrew, CEO of Enchanted Rock, says in a news release. "His understanding of emerging technologies and operational excellence, paired with his extensive experience leading high-performing teams, make him an excellent choice to continue our commitment to deliver customer-focused solutions. We are also extremely grateful for Thais' dedication to the Enchanted Rock team and our customers."

Enchanted Rock's electrical microgrids use natural gas and renewable natural gas to help produce lower carbon emissions and air pollutants than diesel generators,and are capable of achieving resiliency with net-zero emissions. The company recently received a $2.1 million grant from the California Energy Commission for development of technology aimed at reducing greenhouse gasses and other natural gas emissions. Enchanted Rock will share the grant with the University of California Riverside, or UCR.

Trending News

A View From HETI

Ahmad Elgazzar, Haotian Wang and Shaoyun Hao were members of a Rice University team that recently published findings on how acid bubbling can improve CO2 reduction systems. Photo courtesy Rice.

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy. Read more here.

Trending News