Here's why more and more companies — across industries — are making the switch to sustainable technology. Photo via Getty Images

In a modern business landscape characterized by increasing uncertainty and volatility, energy resilience has emerged as a cornerstone of strategic decision-making.

Let's delve deeper into why executives should view energy resilience as one of the best risk management investments they can make.

Mitigating risks and enhancing stability

Investing in energy resilience isn't solely about averting risks; it's about mitigating the potential losses that could arise from energy-related disruptions. It is estimated that half of today’s businesses lack an effective resilience strategy, even though nearly 97 percent of companies have been impacted by a critical risk event.

Whether it's power outages from extreme weather events, grid emergencies from a changing resource mix that is more weather dependent or cyber-attacks, disruptions can inflict substantial financial and reputational damage on businesses. By implementing resilient energy infrastructure and practices, organizations can minimize the impact of such disruptions, ensuring consistent operations even in the face of adversity. As an added benefit, these investments can also contribute to enhancing the stability of our grid infrastructure, benefiting not just individual businesses but the local community and the entire economy.

Improving costs and operational efficiency

Energy resilience also isn't just a defensive strategy; it's also about optimizing costs and operational efficiency to create competitive advantage. By investing in resilient energy infrastructure, such as backup power systems and microgrids, businesses can reduce the downtime associated with energy disruptions, thus avoiding revenue losses and operational inefficiencies.

Additionally, resilient energy solutions often lead to long-term cost savings through increased energy efficiency and reduced reliance on costly backup systems. As circumstances become increasingly uncertain, businesses that prioritize energy resilience can gain a competitive edge by operating more efficiently and cost-effectively than their counterparts.

Ensuring consistent operations amidst uncertainty

In today's rapidly changing business environment, characterized by geopolitical tensions, climate change, and technological advancements, uncertainty has become the new normal. Amidst this uncertainty, ensuring consistent operations is paramount for business continuity and long-term success. Investing in energy resilience provides businesses with the assurance that they can maintain operations even in the face of unforeseen challenges.

Whether it's a sudden power outage from a storm or the grid is stressed and unable to deliver reliable power, resilient energy infrastructure enables organizations to adapt swiftly and continue delivering products and services to customers without interruption.

Enhancing sustainability efforts

In recent years, a growing emphasis on sustainability and environmental stewardship has led to organizations recognizing the importance of reducing their carbon footprint and transitioning towards cleaner, renewable energy sources. Investing in energy resilience provides an opportunity to align sustainability efforts with business objectives.

By integrating renewable energy technologies and energy-efficient practices into their resilience strategies, organizations can not only enhance their environmental performance but also achieve long-term cost savings, ensure regulatory compliance, and build stakeholder trust.

The value of energy resilience for businesses

It is not enough to successfully handle day-to-day operations anymore; organizations need to be prepared for unpredictable events with a reliable energy supply and backup plan. Recently, a hospital in Texas had to evacuate patients and experienced heavy financial losses due to the failure of their traditional diesel generators during an extended outage.

After reevaluating their resiliency strategy, they decided to implement full-facility backup power using Enchanted Rock’s dual-purpose managed microgrid solution, which kept their power on during the next outage and ensured both patient safety and full operational capabilities. Investing in an energy resilience strategy like a microgrid will mitigate these risks and ensure always-on power in times of uncertainty.

A responsible decision for the greater good

Beyond the immediate benefits to individual businesses, investing in energy resilience is also a responsible decision for the greater good. As businesses become increasingly reliant on the grid infrastructure, ensuring its resilience is essential for the stability and reliability of the entire energy ecosystem. By proactively investing in resilient energy solutions, for themselves, businesses also contribute to strengthening the grid infrastructure, reducing the risk of widespread outages, and promoting the overall resilience of the energy system.

Executives must recognize the strategic imperative of investing in resilient energy infrastructure like microgrid systems, which can provide a competitive advantage against organizations that do not have similar measures in place. In doing so, they can navigate uncertainty with confidence, set their business up for future success, and emerge stronger and more resilient than ever before.

———

Ken Cowan is the senior vice president of Enchanted Rock, a Houston-based provider of microgrid technology.

Paul Froutan has been named COO of Enchanted Rock. Photo via Enchanted Rock

Houston-based microgrid company names new COO

c-suite switchup

Houston-based Enchanted Rock, which provides dual-purpose microgrids, announced that Paul Froutan has been named COO.

Froutan joined Enchanted Rock in 2022 as the chief technology officer. He will replace Thais Grossi, who served in the role for nearly eight years.

Froutan previously led Google's Global Data Center Operations and was responsible for managing Google's worldwide data center and server operations. He also served as the vice president of engineering for Rackspace Hosting, and holds a Bachelor of Science in mechanical engineering and an MBA from the University of Texas at Austin.

“Since joining Enchanted Rock, I've been impressed with the team's vast knowledge of natural gas microgrids and how that has been applied to deliver both customer resiliency and financial value," Froutan says in a news release. "Taking the next step and bringing technology, EPC, and O&M together under one umbrella will further improve our innovation feedback loop, which benefits our customers and the communities that rely on our services."

In his previous role with the company, Froutan was responsible for GraniteEcoSystem, Enchanted Rock's microgrid management software, and the launch of the company's advanced natural gas generator initiative. Froutan will lead the product engineering, EPC, and operations and maintenance teams.

"Paul has helped take the technology and intelligence powering our solutions to the next level, and we are pleased that he has accepted this expanded role," Thomas McAndrew, CEO of Enchanted Rock, says in a news release. "His understanding of emerging technologies and operational excellence, paired with his extensive experience leading high-performing teams, make him an excellent choice to continue our commitment to deliver customer-focused solutions. We are also extremely grateful for Thais' dedication to the Enchanted Rock team and our customers."

Enchanted Rock's electrical microgrids use natural gas and renewable natural gas to help produce lower carbon emissions and air pollutants than diesel generators,and are capable of achieving resiliency with net-zero emissions. The company recently received a $2.1 million grant from the California Energy Commission for development of technology aimed at reducing greenhouse gasses and other natural gas emissions. Enchanted Rock will share the grant with the University of California Riverside, or UCR.
Enchanted Rock specializes in electrical-resiliency-as-a-service for sectors such as health care, manufacturing, and government infrastructure. Photo via enchantedrock.com

Houston microgrid company scores $2.1M grant for hydrogen blending tech research

fresh funding

A Houston-based provider of electric microgrids has scooped up a $2.1 million grant from the California Energy Commission for development of technology aimed at reducing greenhouse gasses and other natural gas emissions.

Enchanted Rock shares the grant with the University of California Riverside, or UCR.

“This is an exciting opportunity to further advance the potential use of hydrogen fuel blends for commercialization and market adoption,” Thomas McAndrew, founder and CEO of Enchanted Rock, says in a news release. “We believe in using the cleanest fuel available without compromising on reliability or performance for our customers and are dedicated to helping California, and the nation, achieve its climate and energy goals.”

The use of a hydrogen and natural gas blend for fueling generators shows promise for reducing emissions and improving efficiency, according to Enchanted Rock. The company says the funding will enable it to identify the ideal blend of natural gas and hydrogen for operating a natural generator while improving performance and minimizing emissions.

As part of the grant, UCR’s College of Engineering-Center for Environmental Research and Technology (CE-CERT) will play a key role in measuring emissions and combustion performance. Meanwhile, Palomar College in San Marcos, California, will host a field demonstration site.

”Hydrogen is one of the ‘low-hanging fruit’ solutions to decarbonize our transportation system and other sectors where emissions are hard to abate, and it can serve as a zero-carbon green fuel for internal combustion off-road and highway engines,” says UCR professor Georgios Karavalakis.

Founded in 2006, Enchanted Rock specializes in electrical-resiliency-as-a-service for sectors such as health care, manufacturing, and government infrastructure. The company’s dual-purpose microgrids rely on natural gas and renewable natural gas to produce lower carbon emissions and air pollutants than diesel generators.

In December, Enchanted Rock said it had teamed up with U.S. Energy to supply renewable natural gas for Microsoft’s new data center in San Jose, California, during grid outages and when businesses are directed to reduce power usage.

A carbon neutral data center back-up grid is coming soon to Microsoft — thanks to tech from a Houston company. Photo by Christina Morillo/Pexels

Houston energy resiliency company collaborates on carbon-neutral grid project for Microsoft data center

sustainable support

Microsoft is one step closer to its goals of being carbon negative by 2030 thanks to a new initiative involving a Houston energy company.

Houston-based Enchanted Rock has teamed up to provide its electrical resiliency-as-a-service and ultra-low-emission generators to Microsoft’s new data center in San Jose, California.

Along with Wisconsin-based U.S. Energy, a vertically integrated energy solutions provider, the partnership will procure renewable natural gas for the data center during grid outages and when California’s Base Interruptible Power is activated. Previously, Microsoft announced its plans for carbon neutrality by 2030.

“Enchanted Rock has always been committed to using the cleanest fuel available without compromising on reliability for our customers,” Thomas McAndrew, founder and CEO of Enchanted Rock, says in a news release. “After announcing our renewable natural gas solution in 2021 and this particular Microsoft data center project in 2022, we’re proud to be taking this important next step toward seeing this key technology in operation."

Enchanted Rock, founded in 2006, provides microgrid technology that use natural gas and renewable natural gas, providing for lower emissions and pollution than diesel generators. The company also provides a software platform, GraniteEcosystem, for users for constant management, analytics, and more.

The RNG for the will be delivered by U.S. Energy and sourced from diverted food waste. Per the release, the agreement allows for flexibility in the amount of RNG supplied, which is scheduled to begin being procured by early 2026, so that the initiative will meet its evolving standards for emissions reduction.

“Energy resilience is crucial with data centers like this one,” president of U.S. Energy, Mike Koel, says in the release. “Through our portfolio of 40 renewable natural gas projects, we’re able to ensure our customers have the supply needed to meet any additionality requirements. As we continue to grow our portfolio, our partnership with Enchanted Rock will help more organizations take that next step in their carbon reduction goals.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New report maps Houston workforce development strategies as companies transition to cleaner energy

to-do list

The University of Houston’s Energy University latest study with UH’s Division of Energy and Innovation with stakeholders from the energy industry, academia have released findings from a collaborative white paper, titled "Workforce Development for the Future of Energy.”

UH Energy’s workforce analysis found that the greatest workforce gains occur with an “all-of-the-above” strategy to address the global shift towards low-carbon energy solutions. This would balance electrification and increased attention to renewables with liquid fuels, biomass, hydrogen, carbon capture, utilization and storage commonly known as CCUS, and carbon dioxide removal, according to a news release.

The authors of the paper believe this would support economic and employment growth, which would leverage workers from traditional energy sectors that may lose jobs during the transition.

The emerging hydrogen ecosystem is expected to create about 180,000 new jobs in the greater Houston area, which will offer an average annual income of approximately $75,000. Currently, 40 percent of Houston’s employment is tied to the energy sector.

“To sustain the Houston region’s growth, it’s important that we broaden workforce participation and opportunities,” Ramanan Krishnamoorti, vice president of energy and innovation at UH, says in a news release. “Ensuring workforce readiness for new energy jobs and making sure we include disadvantaged communities is crucial.”

Some of the key takeaways include strategies that include partnering for success, hands-on training programs, flexible education pathways, comprehensive support services, and early and ongoing outreach initiatives.

“The greater Houston area’s journey towards a low-carbon future is both a challenge and an opportunity,” Krishnamoorti continues. “The region’s ability to adapt and lead in this new era will depend on its commitment to collaboration, innovation, and inclusivity. By preparing its workforce, engaging its communities, and leveraging its industrial heritage, we can redefine our region and continue to thrive as a global energy leader.”

The study was backed by federal funding from the Department of the Treasury through the State of Texas under the Resources and Ecosystems Sustainability, Tourist Opportunities, and Revived Economies of the Gulf Coast States Act of 2012.

Houston geothermal startup selects Texas location for first energy storage facility

major milestone

Houston-based geothermal energy startup Sage Geosystems has teamed up with a utility provider for an energy storage facility in the San Antonio metro area.

The three-megawatt EarthStore facility will be on land controlled by the San Miguel Electric Cooperative, which produces electricity for customers in 47 South Texas counties. The facility will be located in the town of Christine, near the cooperative’s coal-fired power plant.

Sage says its energy storage system will be paired with solar energy to supply power for the grid operated by the Electric Reliability Council of Texas (ERCOT). The facility is set to open later this year.

“Once operational, our EarthStore facility in Christine will be the first geothermal energy storage system to store potential energy deep in the earth and supply electrons to a power grid,” Cindy Taff, CEO of Sage Geosystems, says in a news release.

The facility is being designed to store geothermal energy during six- to 10-hour periods.

“Long-duration energy storage is crucial for the ERCOT utility grid, especially with the increasing integration of intermittent wind and solar power generation,” says Craig Courter, CEO of the San Miguel Electric Cooperative.