sustainable support

Houston energy resiliency company collaborates on carbon-neutral grid project for Microsoft data center

A carbon neutral data center back-up grid is coming soon to Microsoft — thanks to tech from a Houston company. Photo by Christina Morillo/Pexels

Microsoft is one step closer to its goals of being carbon negative by 2030 thanks to a new initiative involving a Houston energy company.

Houston-based Enchanted Rock has teamed up to provide its electrical resiliency-as-a-service and ultra-low-emission generators to Microsoft’s new data center in San Jose, California.

Along with Wisconsin-based U.S. Energy, a vertically integrated energy solutions provider, the partnership will procure renewable natural gas for the data center during grid outages and when California’s Base Interruptible Power is activated. Previously, Microsoft announced its plans for carbon neutrality by 2030.

“Enchanted Rock has always been committed to using the cleanest fuel available without compromising on reliability for our customers,” Thomas McAndrew, founder and CEO of Enchanted Rock, says in a news release. “After announcing our renewable natural gas solution in 2021 and this particular Microsoft data center project in 2022, we’re proud to be taking this important next step toward seeing this key technology in operation."

Enchanted Rock, founded in 2006, provides microgrid technology that use natural gas and renewable natural gas, providing for lower emissions and pollution than diesel generators. The company also provides a software platform, GraniteEcosystem, for users for constant management, analytics, and more.

The RNG for the will be delivered by U.S. Energy and sourced from diverted food waste. Per the release, the agreement allows for flexibility in the amount of RNG supplied, which is scheduled to begin being procured by early 2026, so that the initiative will meet its evolving standards for emissions reduction.

“Energy resilience is crucial with data centers like this one,” president of U.S. Energy, Mike Koel, says in the release. “Through our portfolio of 40 renewable natural gas projects, we’re able to ensure our customers have the supply needed to meet any additionality requirements. As we continue to grow our portfolio, our partnership with Enchanted Rock will help more organizations take that next step in their carbon reduction goals.”

Trending News

A View From HETI

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Trending News