The new microgrid will be built on ViVa Center, a campus that was originally developed for Compaq. Photo via vivaversesolutions.com

Two companies are teaming up to build a natural gas microgrid in Houston that will reduce emissions by 98 percent.

Provider of prime and backup power solutions RPower has teamed up with Houston’s ViVaVerse Solutions to build a 17-megawatt (MW) microgrid at the ViVa Center campus in Houston, which is expected to be commissioned by the end of the year.

The microgrid plans to employ ultra-low emissions and natural gas generators to deliver Resiliency-as-a-Service (RaaS), and this will connect to ViVaVerse's colocation data center operations during utility outages.

RPower will also deploy the microgrid across different ERCOT market programs, which will contribute to assist with essential capacity and ancillary services for the local grid. ERCOT has increased its use of renewable energy in recent years, but still has faced criticism for unstable conditions. The microgrids can potentially assist ERCOT, and also help cut back on emissions.

“RPower's pioneering microgrid will not only deliver essential N+1 resiliency to our data center operations but will also contribute to the local community by supplying necessary capacity during peak demand periods when the electric grid is strained,” Eduardo Morales, CEO of ViVaVerse Solutions and Morales Capital Group, says in a news release.

ViVaVerse Solutions will be converting the former Compaq Computer/HPE headquarters Campus into an innovative technology hub called the ViVa Center, which will host the High-Performance Computing Data Center, and spaces dedicated to mission critical infrastructure and technical facilities . The hub will host 200 data labs.

“We are thrilled to partner with ViVaVerse to deploy this `first of its kind' microgrid solution in the data center space,” Jeff Starcher, CEO of RPower, adds. “Our natural gas backup generation system delivers the same reliability and performance as traditional diesel systems, but with a 98 percent reduction in emissions. Further, the RPower system provides critical grid services and will respond to the volatility of renewable generation, further enabling the energy transition to a carbon free future.”

Paul Froutan has been named COO of Enchanted Rock. Photo via Enchanted Rock

Houston-based microgrid company names new COO

c-suite switchup

Houston-based Enchanted Rock, which provides dual-purpose microgrids, announced that Paul Froutan has been named COO.

Froutan joined Enchanted Rock in 2022 as the chief technology officer. He will replace Thais Grossi, who served in the role for nearly eight years.

Froutan previously led Google's Global Data Center Operations and was responsible for managing Google's worldwide data center and server operations. He also served as the vice president of engineering for Rackspace Hosting, and holds a Bachelor of Science in mechanical engineering and an MBA from the University of Texas at Austin.

“Since joining Enchanted Rock, I've been impressed with the team's vast knowledge of natural gas microgrids and how that has been applied to deliver both customer resiliency and financial value," Froutan says in a news release. "Taking the next step and bringing technology, EPC, and O&M together under one umbrella will further improve our innovation feedback loop, which benefits our customers and the communities that rely on our services."

In his previous role with the company, Froutan was responsible for GraniteEcoSystem, Enchanted Rock's microgrid management software, and the launch of the company's advanced natural gas generator initiative. Froutan will lead the product engineering, EPC, and operations and maintenance teams.

"Paul has helped take the technology and intelligence powering our solutions to the next level, and we are pleased that he has accepted this expanded role," Thomas McAndrew, CEO of Enchanted Rock, says in a news release. "His understanding of emerging technologies and operational excellence, paired with his extensive experience leading high-performing teams, make him an excellent choice to continue our commitment to deliver customer-focused solutions. We are also extremely grateful for Thais' dedication to the Enchanted Rock team and our customers."

Enchanted Rock's electrical microgrids use natural gas and renewable natural gas to help produce lower carbon emissions and air pollutants than diesel generators,and are capable of achieving resiliency with net-zero emissions. The company recently received a $2.1 million grant from the California Energy Commission for development of technology aimed at reducing greenhouse gasses and other natural gas emissions. Enchanted Rock will share the grant with the University of California Riverside, or UCR.
The company, based in Tomball, has developed a mobile, scalable energy source that can be used anywhere, anytime. Image via kaizencleanenergy.com

Houston mobile hydrogen generator company gets PE backing to expand its business

fueling the future

An innovative Houston-area company is on a mission to make using hydrogen energy easier and cheaper.

A recently announced partnership with investment firm, Balcor Companies, will help make this a reality as Kaizen Clean Energy looks to make hydrogen energy more accessible, reliable and affordable. Announced July 6, Balcor now has an ownership stake in Kaizen. The terms of the deal were not disclosed.

The company, based in Tomball, has developed a “micro grid” hydrogen power station — a mobile, scalable energy source that can be used anywhere, anytime.

Balcor Companies Founder and Director Chris Balat says his company is looking at their stake in KCE as an investment in shaping a more sustainable world.

“We are thrilled to make our first foray into the energy sector with Kaizen Energy as our trusted partner,” he says in a statement. "Our association with Kaizen is a testament to our commitment towards a sustainable future, driving positive change in the world while delivering value to our stakeholders.”

Kaizen's mission is to succeed where electric grids fail. One fallback source to help strained electric grids has typically been diesel generators. However, diesel generators increase local emissions which produce a significant amount of air pollution and health concerns. Kaizen’s hydrogen generators can be used to power buildings, homes, hospitals, data centers, events, and farm equipment. They are portable, which means it does not require any excessive infrastructure.

“Our system allows customers the ability to have renewable energy anywhere in the world in a very short time frame,” said Eric Smith, co-founder of KCE. “For EV charging, for power generation, to replace a diesel generator.”

Smith tells EnergyCapitalhtx the concept is very attractive to corporations who lease buildings as building out a permanent infrastructure could be costly and time consuming.

Robert Meaney, a Texas Tech engineering graduate, founded Kaizen Clean Energy in 2020, along with Eric Smith and Craig Klaasmeyer. Meaney designed the technology using a mixture of methanol and water to create hydrogen. A 330-gallon tank of the mixture produces about 150 kilograms of hydrogen — or 1.6 megawatt-hours of energy. The mixture lowers the risks of many of the drawbacks of hydrogen usage. For example, it can be stored for longer periods and transported long distances safely.

The microgrid fits into a small container and can be dropped on site at remote locations or in heavily congested grid areas. It also eliminates the cost of hydrogen transportation by generating hydrogen on-site with commonly available methanol, which can be both used for hydrogen fuel and converted to electricity for electric vehicle charging. This microgrid technology can both connect to the grid to supplement available power, or can be used during a power outage.

To put this energy source to use, KCE has partnered with Extreme E, an international off-road racing series that is part of Formula 1 and uses electric SUV’s to race in remote parts of the world. Kaizen’s units are also being used at a fleet-charging location in Los Angeles.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice research team's study keeps CO2-to-fuel devices running 50 times longer

new findings

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy. Read more here.

The case for smarter CUI inspections in the energy sector

Guest Column

Corrosion under insulation (CUI) accounts for roughly 60% of pipeline leaks in the U.S. oil and gas sector. Yet many operators still rely on outdated inspection methods that are slow, risky, and economically unsustainable.

This year, widespread budget cuts and layoffs across the sector are forcing refineries to do more with less. Efficiency is no longer a goal; it’s a mandate. The challenge: how to maintain safety and reliability without overextending resources?

Fortunately, a new generation of technologies is gaining traction in the oil and gas industry, offering operators faster, safer, and more cost-effective ways to identify and mitigate CUI.

Hidden cost of corrosion

Corrosion is a pervasive threat, with CUI posing the greatest risk to refinery operations. Insulation conceals damage until it becomes severe, making detection difficult and ultimately leading to failure. NACE International estimates the annual cost of corrosion in the U.S. at $276 billion.

Compounding the issue is aging infrastructure: roughly half of the nation’s 2.6 million miles of pipeline are over 50 years old. Aging infrastructure increases the urgency and the cost of inspections.

So, the question is: Are we at a breaking point or an inflection point? The answer depends largely on how quickly the industry can move beyond inspection methods that no longer match today's operational or economic realities.

Legacy methods such as insulation stripping, scaffolding, and manual NDT are slow, hazardous, and offer incomplete coverage. With maintenance budgets tightening, these methods are no longer viable.

Why traditional inspection falls short

Without question, what worked 50 years ago no longer works today. Traditional inspection methods are slow, siloed, and dangerously incomplete.

Insulation removal:

  • Disruptive and expensive.
  • Labor-intensive and time-consuming, with a high risk of process upsets and insulation damage.
  • Limited coverage. Often targets a small percentage of piping, leaving large areas unchecked.
  • Health risks: Exposes workers to hazardous materials such as asbestos or fiberglass.

Rope access and scaffolding:

  • Safety hazards. Falls from height remain a leading cause of injury.
  • Restricted time and access. Weather, fatigue, and complex layouts limit coverage and effectiveness.
  • High coordination costs. Multiple contractors, complex scheduling, and oversight, which require continuous monitoring, documentation, and compliance assurance across vendors and protocols drive up costs.

Spot checks:

  • Low detection probability. Random sampling often fails to detect localized corrosion.
  • Data gaps. Paper records and inconsistent methods hinder lifecycle asset planning.
  • Reactive, not proactive: Problems are often discovered late after damage has already occurred.

A smarter way forward

While traditional NDT methods for CUI like Pulsed Eddy Current (PEC) and Real-Time Radiography (RTR) remain valuable, the addition of robotic systems, sensors, and AI are transforming CUI inspection.

Robotic systems, sensors, and AI are reshaping how CUI inspections are conducted, reducing reliance on manual labor and enabling broader, data-rich asset visibility for better planning and decision-making.

ARIX Technologies, for example, introduced pipe-climbing robotic systems capable of full-coverage inspections of insulated pipes without the need for insulation removal. Venus, ARIX’s pipe-climbing robot, delivers full 360° CUI data across both vertical and horizontal pipe circuits — without magnets, scaffolding, or insulation removal. It captures high-resolution visuals and Pulsed Eddy Current (PEC) data simultaneously, allowing operators to review inspection video and analyze corrosion insights in one integrated workflow. This streamlines data collection, speeds up analysis, and keeps personnel out of hazardous zones — making inspections faster, safer, and far more actionable.

These integrated technology platforms are driving measurable gains:

  • Autonomous grid scanning: Delivers structured, repeatable coverage across pipe surfaces for greater inspection consistency.
  • Integrated inspection portal: Combines PEC, RTR, and video into a unified 3D visualization, streamlining analysis across inspection teams.
  • Actionable insights: Enables more confident planning and risk forecasting through digital, shareable data—not siloed or static.

Real-world results

Petromax Refining adopted ARIX’s robotic inspection systems to modernize its CUI inspections, and its results were substantial and measurable:

  • Inspection time dropped from nine months to 39 days.
  • Costs were cut by 63% compared to traditional methods.
  • Scaffolding was minimized 99%, reducing hazardous risks and labor demands.
  • Data accuracy improved, supporting more innovative maintenance planning.

Why the time is now

Energy operators face mounting pressure from all sides: aging infrastructure, constrained budgets, rising safety risks, and growing ESG expectations.

In the U.S., downstream operators are increasingly piloting drone and crawler solutions to automate inspection rounds in refineries, tank farms, and pipelines. Over 92% of oil and gas companies report that they are investing in AI or robotic technologies or have plans to invest soon to modernize operations.

The tools are here. The data is here. Smarter inspection is no longer aspirational — it’s operational. The case has been made. Petromax and others are showing what’s possible. Smarter inspection is no longer a leap but a step forward.

---

Tyler Flanagan is director of service & operations at Houston-based ARIX Technologies.


Scientists warn greenhouse gas accumulation is accelerating and more extreme weather will come

Climate Report

Humans are on track to release so much greenhouse gas in less than three years that a key threshold for limiting global warming will be nearly unavoidable, according to a study released June 19.

The report predicts that society will have emitted enough carbon dioxide by early 2028 that crossing an important long-term temperature boundary will be more likely than not. The scientists calculate that by that point there will be enough of the heat-trapping gas in the atmosphere to create a 50-50 chance or greater that the world will be locked in to 1.5 degrees Celsius (2.7 degrees Fahrenheit) of long-term warming since preindustrial times. That level of gas accumulation, which comes from the burning of fuels like gasoline, oil and coal, is sooner than the same group of 60 international scientists calculated in a study last year.

“Things aren’t just getting worse. They’re getting worse faster,” said study co-author Zeke Hausfather of the tech firm Stripe and the climate monitoring group Berkeley Earth. “We’re actively moving in the wrong direction in a critical period of time that we would need to meet our most ambitious climate goals. Some reports, there’s a silver lining. I don’t think there really is one in this one.”

That 1.5 goal, first set in the 2015 Paris agreement, has been a cornerstone of international efforts to curb worsening climate change. Scientists say crossing that limit would mean worse heat waves and droughts, bigger storms and sea-level rise that could imperil small island nations. Over the last 150 years, scientists have established a direct correlation between the release of certain levels of carbon dioxide, along with other greenhouse gases like methane, and specific increases in global temperatures.

In Thursday's Indicators of Global Climate Change report, researchers calculated that society can spew only 143 billion more tons (130 billion metric tons) of carbon dioxide before the 1.5 limit becomes technically inevitable. The world is producing 46 billion tons (42 billion metric tons) a year, so that inevitability should hit around February 2028 because the report is measured from the start of this year, the scientists wrote. The world now stands at about 1.24 degrees Celsius (2.23 degrees Fahrenheit) of long-term warming since preindustrial times, the report said.

Earth's energy imbalance

The report, which was published in the journal Earth System Science Data, shows that the rate of human-caused warming per decade has increased to nearly half a degree (0.27 degrees Celsius) per decade, Hausfather said. And the imbalance between the heat Earth absorbs from the sun and the amount it radiates out to space, a key climate change signal, is accelerating, the report said.

“It's quite a depressing picture unfortunately, where if you look across the indicators, we find that records are really being broken everywhere,” said lead author Piers Forster, director of the Priestley Centre for Climate Futures at the University of Leeds in England. “I can't conceive of a situation where we can really avoid passing 1.5 degrees of very long-term temperature change.”

The increase in emissions from fossil-fuel burning is the main driver. But reduced particle pollution, which includes soot and smog, is another factor because those particles had a cooling effect that masked even more warming from appearing, scientists said. Changes in clouds also factor in. That all shows up in Earth’s energy imbalance, which is now 25% higher than it was just a decade or so ago, Forster said.

Earth’s energy imbalance “is the most important measure of the amount of heat being trapped in the system,” Hausfather said.

Earth keeps absorbing more and more heat than it releases. “It is very clearly accelerating. It’s worrisome,” he said.

Crossing the temperature limit

The planet temporarily passed the key 1.5 limit last year. The world hit 1.52 degrees Celsius (2.74 degrees Fahrenheit) of warming since preindustrial times for an entire year in 2024, but the Paris threshold is meant to be measured over a longer period, usually considered 20 years. Still, the globe could reach that long-term threshold in the next few years even if individual years haven't consistently hit that mark, because of how the Earth's carbon cycle works.

That 1.5 is “a clear limit, a political limit for which countries have decided that beyond which the impact of climate change would be unacceptable to their societies,” said study co-author Joeri Rogelj, a climate scientist at Imperial College London.

The mark is so important because once it is crossed, many small island nations could eventually disappear because of sea level rise, and scientific evidence shows that the impacts become particularly extreme beyond that level, especially hurting poor and vulnerable populations, he said. He added that efforts to curb emissions and the impacts of climate change must continue even if the 1.5 degree threshold is exceeded.

Crossing the threshold "means increasingly more frequent and severe climate extremes of the type we are now seeing all too often in the U.S. and around the world — unprecedented heat waves, extreme hot drought, extreme rainfall events, and bigger storms,” said University of Michigan environment school dean Jonathan Overpeck, who wasn't part of the study.

Andrew Dessler, a Texas A&M University climate scientist who wasn't part of the study, said the 1.5 goal was aspirational and not realistic, so people shouldn’t focus on that particular threshold.

“Missing it does not mean the end of the world,” Dessler said in an email, though he agreed that “each tenth of a degree of warming will bring increasingly worse impacts.”