University of Houston professor Xiaonan Shan and the rest of his research team are celebrating fresh funding from a federal grant. Photo via UH.edu

A team of scientists from the University of Houston, in collaboration with Howard University in Washington D.C., has received a $1 million award from the National Science Foundation for a project that aims to automate the discovery of new clean-energy catalysts.

The project, dubbed "Multidisciplinary High-Performance Computing and Artificial Intelligence Enabled Catalyst Design for Micro-Plasma Technologies in Clean Energy Transition," aims to use machine learning and AI to improve the efficiency of catalysts in hydrogen generation, carbon capture and energy storage, according to UH.

“This research directly contributes to these global challenges,” Jiefu Chen, the principal investigator of the project and associate professor of electrical and computer engineering, said in a statement. “This interdisciplinary effort ensures comprehensive and innovative solutions to complex problems.”

Chen is joined by Lars Grabow, professor of chemical and biomolecular engineering; Xiaonan Shan, associate professor of electrical and computing engineering; and Xuquing Wu, associate professor of information science technology. Su Yan, an associate professor of electrical engineering and computer science at Howard University, is collaborating on the project.

The University of Houston team: Xiaonan Shan, associate professor electrical and computing engineering, Jiefu Chen, associate professor of electrical and computer engineering, Lars Grabow, professor of chemical and biomolecular engineering, and Xuquing Wu, associate professor of information science technology. Photo via UH.edu

The team will create a robotic synthesis and testing facility that will automate the experimental testing and verification process of the catalyst design process, which traditionally is slow-going. It will implement AI and advanced, unsupervised machine learning techniques, and have a special focus on plasma reactions.

The project has four main focuses, according to UH.

  1. Using machine learning to discover materials for plasma-assisted catalytic reactions
  2. Developing a model to simulate complex interactions to better understand microwave-plasma-assisted heating
  3. Designing catalysts supports for efficient microwave-assisted reactions
  4. Developing a bench scale reactor to demonstrate the efficiency of the catalysts support system

Additionally, the team will put the funding toward the development of a multidisciplinary research and education program that will train students on using machine learning for topics like computational catalysis, applied electromagnetics and material synthesis. The team is also looking to partner with industry on related projects.

“This project will help create a knowledgeable and skilled workforce capable of addressing critical challenges in the clean energy transition,” Grabow added in a statement. “Moreover, this interdisciplinary project is going to be transformative in that it advances insights and knowledge that will lead to tangible economic impact in the not-too-far future.”

This spring, UH launched a new micro-credential course focused on other applications for AI and robotics in the energy industry.

Around the same time, Microsoft's famous renowned co-founder Bill Gates spoke at CERAWeek to a standing-room-only crowd on the future of the industry. Also founder of Breakthrough Energy, Gates addressed the topic of AI.

Texas has the most utility-scale solar capacity installed and is home to 20 percent of the overall U.S. solar fleet. Photo via Getty Images

Texas passes California on national report of top solar states

by the numbers

For the first time, Texas has passed California in the second quarter of 2024 to become the top solar state in the country.

The American Clean Power Association's quarterly market report found that, by adding 3,293 megawatts of new solar year-to-date, Texas has the most utility-scale solar capacity installed, comprising 20 percent of the overall U.S. solar fleet. The American Clean Power Association, which represents over 800 energy storage, wind, utility-scale solar, transmission, and clean hydrogen companies, found that Texas is home to 21,932 megawatts of capacity,

By utilizing clean energy initiatives, Texas included 1.6 gigawatts of new solar, 574 megawatts of storage, and 366 megawatts of onshore wind. With more than 28,000 megawatts, Texas had the highest volume of clean power development capacity in the second quarter. About 163,000 megawatts of capacity overall are in the works throughout the United States. Texas ranks No. 1 for total operating wind capacity and total operating solar capacity, and comes in second for operating storage capacity.

Texas again led in production levels with clean power construction projects nationally, which boasts more than 19,000 megawatts worth of clean power energy currently under construction. With almost 28.3 gigawatts in advanced development or under construction, Texas continues to come in at No.1, as California is next with over 16.4 gigawatts in the state’s project pipeline.

California added more than 1,900 megawatts of new clean power capacity in the second quarter, with its clean energy development behavior leaning more towards adding storage, which amounts to 60 percent of California’s year-to-date clean power installations.

According to the report from SmartAsset, the Lone Star State has the most clean energy capacity at 56,405 megawatts due to its sheer size for solar capacity, but continues to trail states with similar geographic characteristics in overall clean energy prevalence.

Another report published by the U.S. Energy Information Administration, says Texas will make up 35 percent of new utility-scale solar capacity in the U.S. this year, followed by California (10 percent) and Florida (6 percent).

While Texas’ solar efforts have shown positive trends, the state ranked No. 38 in a report by WalletHub that determined it was the thirteenth least green state.

Jupiter Power's Callisto I is up and running. Photo courtesy of jupiterpower.io

Houston clean energy storage facility goes online to power ERCOT grid

green light

A new battery energy storage facility in Houston is officially up and running to power the ERCOT grid with a supply of reliable, zero emissions power.

Jupiter Power announced the commercial operations launch of its 400-megawatt-hour battery facility, Callisto I, in central Houston on the site of the former HL&P H.O. Clarke fossil fuel power plant.

"Jupiter couldn't be prouder about bringing the Callisto I project online," Andy Bowman, CEO of Jupiter Power, says in a news release. "This project responds to lawmakers' calls to increase affordable and dispatchable new generation in an area where people need more power. Callisto I is the first energy storage project at this scale in the City of Houston and will help meet Houston's growing power needs while also increasing resiliency from extreme weather events."

The new project is Jupiter Power's ninth project to deliver energy storage to ERCOT — bringing its total ERCOT fleet to 1,375-megawatt-hour capacity — but its the first in the Houston area. The company is currently developing over 11,000 megawatts of projects across the country. Founded in 2017, Jupiter Power is headquartered in Austin and has offices in Houston and Chicago.

"The announcement of Jupiter Power's Callisto I Energy Storage project is significant and exciting for the region, as it's the first large-scale transmission-connected energy storage project in the City of Houston," Jane Stricker, senior vice president at the Greater Houston Partnership and executive director at the Houston Energy Transition Initiative, adds. "This critical project will help address peak power demand and is another great example of our region's leadership in scaling and deploying impactful solutions for an all the above energy future."

Among the company's financial backers is Houston-based EnCap Energy Transition, which invested in Jupiter Power via its Fund II.

Caliche says Sixth Street’s backing will enable it to expand its Golden Storage Triangle complex. Photo via calichestorage.com

Investor acquires majority stake in Houston energy storage, CCS co.

here's the deal

Investment firm Sixth Street has purchased a majority stake in Houston-based Caliche Development Partners, which focuses on buying, developing, and operating natural gas and gas storage facilities along with carbon sequestration projects.

Financial terms weren’t disclosed.

The deal includes Caliche’s Golden Triangle Storage facilities and carbon sequestration project in Beaumont, and its Central Valley Gas Storage facilities in Princeton, California.

Caliche says Sixth Street’s backing will enable it to expand its Golden Storage Triangle complex, including the addition of two natural gas caverns.

Caliche’s leadership will continue to oversee day-to-day operations and remain investors in the company. All employees in Caliche’s Texas and California offices and at its facilities are staying aboard.

“We continue to meet the growing demand for the storage of natural gas and industrial gasses, including helium and hydrogen, and provide the infrastructure for lower environmental impact forms of energy through our commitment to safety, deliverability, [and] asset integrity,” Dave Marchese, CEO of Caliche, says in a news release.

Richard Sberlati, a partner at Sixth Street, which has an office in Houston, says Caliche’s success “comes from a combined 65 years of collective storage experience, and we look forward to partnering with the company’s management as they further grow the business.”

Sixth Street’s acquisition of Caliche’s Texas business operations is expected to close in late 2024, and its acquisition of the California business operations is set to close in mid-2025.

Founded in 2016, Caliche announced in 2020 that it had arranged a $150 million debt facility with Houston-based investment firm Orion Infrastructure Capital. Two years later, Caliche gained $268 million in funding from Orion and Chicago-based asset management firm GCM Grosvenor.

Adena Power uses three patented materials to produce a sodium-based battery that delivers clean, safe, long-lasting energy storage. Photo via adenapower.com

Sodium-based battery startup joins Halliburton Labs

new cohort co.

An Ohio-based clean energy startup has joined Houston-based Halliburton Labs, an incubator for early-stage energy tech companies.

Adena Power uses three patented materials to produce a sodium-based battery that delivers clean, safe, long-lasting energy storage. The startup is trying to capitalize on the 100 terawatt-hour potential for energy storage in the U.S. grid.

“With Halliburton Labs’ support and operational expertise, Adena Power looks to accelerate scaling and take advantage of the high-growth market opportunity,” Nathan Cooley, co-founder and CEO of Adena Power, says in a news release.

Adena, founded in 2022, supplies energy storage batteries for the commercial, industrial, and utility sectors. The startup has collected funding from four investors, according to PitchBook: OhioXcelerate, Third Derivative, BRITE Energy Innovators, and For ClimateTech.

Adena’s addition to Halliburton Labs comes during a momentous year for the company. For example:

  • Adena won the People’s Choice Award at the National Renewable Energy Labs Industry Growth Forum.
  • Adena earned the MAKE IT (Manufacture of Advanced Key Energy Infrastructure Technologies) Prize from the U.S. Department of Energy.

“Our team is ready to collaborate with Adena to help them accelerate their growth to meet the demand for behind-the-meter storage solutions,” says Dale Winger, managing director of Halliburton Labs.

Halliburton Labs is a wholly owned subsidiary of Halliburton, a provider of products and services for the energy industry. The incubator will have pitches at the inaugural Houston Energy and Climate Startup Week next month.

Stafford-based Microvast named Yaser Ali as CFO. Photo via LinkedIn

Houston area battery company names new C-level leader

new hire

Houston-based battery technology innovation company, Microvast Holdings, announced the appointment of Yaser Ali as CFO. This is part of Microvast's efforts to strengthen its executive leadership team.

Ali most recently served as CFO of Vision Technologies since August 2022. He also previously held leadership finance roles at companies such as BayWa-R.E Solar and GreenFox Services. He was also a Regional Finance Controller at Amazon.

“I’m happy to share that I’m starting a new position as Chief Financial Officer at Microvast,” Ali said on his LinkedIn. ”Renowned for its cutting-edge cell technology and vertical integration capabilities, Microvast covers core battery chemistry to modules and packs, serving markets such as electric vehicles, energy storage, and battery components.”

Microvast considers itself a leader in the innovation and technology of lithium-ion batteries through the design, development, and manufacture of premier battery cells, modules, and packs for transportation, heavy equipment, and utility-scale energy storage systems.

The Staffford-based Microvast has also recently drawn $12 million from a $25 million secured debt facility provided by the company's founder, chairman, and CEO Yang Wu. The move helps streamline operations, including workforce reductions and consolidations within its U.S. battery division.

Recently, Microvast celebrated four years supplying its high-performance battery packs to eversum mobility solutions GmbH ("eVersum”), which helps support the company’s goals of electrification of next-generation autonomous eShuttle buses from eVersum. The batteries helped enhance “the accessibility and convenience of eShuttle buses while maintaining high performance and efficiency” according to a news release.

Microvast, which is headquartered just southwest of Houston in Stafford, has a market capitalization of $125.16 million, according to InvestingPro.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston's hydrogen revolution gets up to $1.2B federal boost to power Gulf Coast’s clean energy future

HyVelocity funding

The emerging low-carbon hydrogen ecosystem in Houston and along the Texas Gulf Coast is getting as much as a $1.2 billion lift from the federal government.

The U.S. Department of Energy funding, announced November 20, is earmarked for the new HyVelocity Hub. The hub — backed by energy companies, schools, nonprofits, and other organizations — will serve the country’s biggest hydrogen-producing area. The region earns that status thanks to more than 1,000 miles of dedicated hydrogen pipelines and almost 50 hydrogen production plants.

“The HyVelocity Hub demonstrates the power of collaboration in catalyzing economic growth and creating value for communities as we build a regional hydrogen economy that delivers benefits to Gulf Coast communities,” says Paula Gant, president and CEO of Des Plaines, Illinois-based GTI Energy, which is administering the hub.

HyVelocity, which aims to become the largest hydrogen hub in the country, has already received about $22 million of the $1.2 billion in federal funding to kickstart the project.

Organizers of the hydrogen project include:

  • Arlington, Virginia-based AES Corp.
  • Air Liquide, whose U.S. headquarters is in Houston
  • Chevron, which is moving its headquarters to Houston
  • Spring-based ExxonMobil
  • Lake Mary, Florida-based Mitsubishi Power Americas
  • Denmark-based Ørsted
  • Center for Houston’s Future
  • Houston Advanced Research Center
  • University of Texas at Austin

The hub’s primary contractor is HyVelocity LLC. The company says the hub could reduce carbon dioxide emissions by up to seven million metric tons per year and create as many as 45,000 over the life of the project.

HyVelocity is looking at several locations in the Houston area and along the Gulf Coast for large-scale production of hydrogen. The process will rely on water from electrolysis along with natural gas from carbon capture and storage. To improve distribution and lower storage costs, the hub envisions creating a hydrogen pipeline system.

Clean hydrogen generated by the hub will help power fuel-cell electric trucks, factories, ammonia plants, refineries, petrochemical facilities, and marine fuel operations.

CenterPoint’s Greater Houston Resiliency Initiative makes advancements on progress

step by step

CenterPoint Energy has released the first of its public progress updates on the actions being taken throughout the Greater Houston 12-county area, which is part of Phase Two of its Greater Houston Resiliency Initiative.

The GHRI Phase Two will lead to more than 125 million fewer outage minutes annually, according to CenterPoint.

According to CenterPoint, they have installed around 4,600 storm-resilient poles, installed more than 100 miles of power lines underground, cleared more than 800 miles of hazardous vegetation to improve reliability, and installed more self-healing automation all during the first two months of the program in preparation for the 2025 hurricane season.

"This summer, we accomplished a significant level of increased system hardening in the first phase of the Greater Houston Resilience Initiative,” Darin Carroll, senior vice president of CenterPoint Energy's Electric Business, says in a news release.

”Since then, as we have been fully engaged in delivering the additional set of actions in our second phase of GHRI, we continue to make significant progress as we work toward our ultimate goal of becoming the most resilient coastal grid in the country,” he continues.

The GHRI is a series of actions to “ strengthen resilience, enable a self-healing grid and reduce the duration and impact of power outages” according to a news release. The following progress through early November include:

The second phase of GHRI will run through May 31, 2025. During this time, CenterPoint teams will be installing 4,500 automated reliability devices to minimize sustained interruptions during major storms, reduce restoration times, and establish a network of 100 new weather monitoring stations. CenterPoint plans to complete each of these actions before the start of the next hurricane season.

“Now, and in the months to come, we will remain laser-focused on completing these critical resiliency actions and building the more reliable and more resilient energy system our customers expect and deserve," Carroll adds.

CenterPoint also announced that it has completed all 42 of the critical actions the company committed to taking in the aftermath of Hurricane Beryl. Some of the actions were trimming or removing higher-risk vegetation from more than 2,000 power line miles, installing more than 1,100 more storm-resilient poles, installing over 300 automated devices to reduce sustained outages, launching a new, cloud-based outage tracker, improving CenterPoint's Power Alert Service, hosting listening sessions across the service area and using feedback.

In October, CenterPoint Energy announced an agreement with Artificial Intelligence-powered infrastructure modeling platform Neara for engineering-grade simulations and analytics, and to deploy Neara’s AI capabilities across CenterPoint’s Greater Houston service area.