Locksley Resources will provide antimony-rich feedstocks from a project in the Mojave Desert as part of a new partnership with Rice University that aims to develop scalable methods for extracting and utilizing antimony. Photo via locksleyresources.com.au.

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”

Nightpeak Energy's Bocanova Power project in Brazoria County has reached commercial operation. Photo courtesy Nightpeak Energy.

California company launches Tesla Megapack battery project in Houston area

power on

Oakland, California-based Nightpeak Energy announced earlier this month that its 150-megawatt battery storage project in Brazoria County, known as Bocanova Power, is now operating to address Houston’s peak capacity needs.

“This battery storage project will enhance grid reliability in the Alvin area while continuing to support integrating renewable energy,” Cary Perrin, president and CEO of the Northern Brazoria County Chamber of Commerce, said in a news release. “I believe we need energy storage now more than ever for its pivotal role in reducing strain on the grid while meeting fast-growing power demand in Texas and Brazoria County."

The project reached commercial operation in August, according to the release. The project utilizes Tesla's Megapack 2 XL battery storage system, and the facility operates under a long-term power purchase agreement with an undisclosed “investment-grade power purchaser.”

“Bocanova Power demonstrates the speed at which Nightpeak Energy is overcoming complex challenges to energize projects that support America's growing need for affordable, reliable, and secure energy,” Paris Hays, co-founder and CEO/CDO of Nightpeak Energy, added in the news release. “Unprecedented AI data center and manufacturing growth has only accelerated the need for these resources.”

Hays added in the release that the company has plans for more energy infrastructure projects in Texas and in the Western U.S.

Nightpeak Energy develops, owns and operates power plants that support the growing capacity needs of a decarbonized grid. It also owns and operates 240 MW of battery storage and natural gas generation facilities.

The company was founded in 2022 and backed by equity funding of up to $200 million from Dallas-based investment firm Energy Spectrum Capital.

A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

UH researchers make breakthrough in cutting carbon capture costs

Carbon breakthrough

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants.

Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team released two significant publications that made significant strides relating to carbon capture processes. The first, published in Nature Communications, introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process. Another, featured on the cover of ES&T Engineering, demonstrated a vanadium redox flow system capable of both capturing carbon and storing renewable energy.

“These publications reflect our group’s commitment to fundamental electrochemical innovation and real-world applicability,” Rahimi said in a news release. “From membraneless systems to scalable flow systems, we’re charting pathways to decarbonize hard-to-abate sectors and support the transition to a low-carbon economy.”

According to the researchers, the “A Membraneless Electrochemically Mediated Amine Regeneration for Carbon Capture” research paper marked the beginning of the team’s first focus. The research examined the replacement of costly ion-exchange membranes with gas diffusion electrodes. They found that the membranes were the most expensive part of the system, and they were also a major cause of performance issues and high maintenance costs.

The researchers achieved more than 90 percent CO2 removal (nearly 50 percent more than traditional approaches) by engineering the gas diffusion electrodes. According to PhD student and co-author of the paper Ahmad Hassan, the capture costs approximately $70 per metric ton of CO2, which is competitive with other innovative scrubbing techniques.

“By removing the membrane and the associated hardware, we’ve streamlined the EMAR workflow and dramatically cut energy use,” Hassan said in the news release. “This opens the door to retrofitting existing industrial exhaust systems with a compact, low-cost carbon capture module.”

The second breakthrough, published by PhD student Mohsen Afshari, displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge. The results suggested that the technology could potentially provide carbon removal and grid balancing when used with intermittent renewables, such as solar or wind power.

“Integrating carbon capture directly into a redox flow battery lets us tackle two challenges in one device,” Afshari said in the release. “Our front-cover feature highlights its potential to smooth out renewable generation while sequestering CO2.”

A new EO could streamline regulatory burdens for the development of data centers supporting AI. Getty Images

Energy experts: Executive order enhances federal permitting for AI data centers

Guest column

In an effort to accelerate the development of artificial intelligence, President Trump signed an executive order (EO) aimed at expediting the federal permitting process for data centers, particularly those supporting AI inference, training, simulation, or synthetic data generation.

Following the White House’s issuance of a broader AI Action Plan, the EO seeks to streamline regulatory burdens and utilize federal resources to encourage the development of data centers supporting AI, as well as the physical components and energy infrastructure needed to construct and provide power to these data centers.

Qualifying Projects

The EO directs several federal agencies to take actions to incentivize the development of “Qualifying Projects,” which the EO defines as “Data Centers” and “Covered Component Projects.” The EO defines “Data Center Projects” as facilities that require over 100 megawatts (MW) of new load dedicated to AI inference, training, simulation, or synthetic data generation. The EO defines Covered Component Projects as materials, products, and infrastructure that are required to build Data Center Projects or upon which Data Center Projects depend, including energy infrastructure projects like transmission lines and substations, dispatchable base load energy sources like natural gas, geothermal, and nuclear used principally to power Data Center Projects, and semiconductors and related equipment. For eligibility as a Qualifying Project, the project sponsor must commit at least $500 million in capital expenditures. Data Center Projects and Covered Component Projects may also meet the definition of Qualifying Project if they protect national security or are otherwise designated as Qualifying Projects by the Secretary of Defense, Secretary of the Interior, Secretary of Commerce, or Secretary of Energy.

Streamlining Permitting of Qualifying Projects

The EO outlines the following strategies aimed at improving the efficiency of environmental reviews and permitting for Qualifying Projects:

  • NEPA Applicability: The Council on Environmental Quality (CEQ), in coordination with relevant agencies, is directed to utilize existing and new categorical exclusions under the National Environmental Policy Act (NEPA) to cover actions related to Qualifying Projects, which “normally do not have a significant effect on the human environment.” The EO states that where federal financial assistance represents less than 50 percent of total project costs of a Qualifying Project, the Project shall be presumed not to be a “major Federal action” requiring NEPA review.
  • FAST-41: The Executive Director of the Federal Permitting Improvement Steering Council (FPISC) is empowered to designate a Qualifying Project as a “transparency project” under the Fixing America’s Surface Transportation Act (FAST-41) and expedite its transition from a transparency project to a “covered project” under FAST-41. FPISC is directed to consider all available options to designate a Qualifying Project as a FAST-41 covered project, even where the Qualifying Project may not be eligible.
  • EPA Permitting: The US Environmental Protection Agency (EPA) is directed to modify applicable regulations under several environmental protection statutes impacting the development of Qualifying Projects on federal and non-federal lands. EPA is also directed to develop guidance to expedite environmental reviews for identification and reuse of Brownfield and Superfund Sites suitable for Qualifying Projects. Importantly, state environmental permitting agencies are not subject to the EO.
  • Corps Permitting: The US Army Corps of Engineers is directed to review the nationwide permits issued under Section 404 of the Clean Water Act and Section 10 of the Rivers and Harbors Act of 1899 to determine whether an activity-specific nationwide permit is needed to facilitate the efficient permitting of activities related to Qualifying Projects.
  • Interior Permitting: The US Department of the Interior is directed to consult with the US Department of Commerce regarding the streamlining of Endangered Species Act consultations for Qualifying Projects, and to work with the US Department of Energy to identify federal lands that may be available for use by Qualifying Projects and offer appropriate authorizations to project sponsors.

Federal Incentives for Qualifying Projects

The EO also directs the US Secretary of Commerce to “launch an initiative to provide financial support for Qualifying Projects,” which may include loans, grants, tax incentives, and offtake agreements. The EO further directs all “relevant agencies” to identify and submit to the White House Office of Office of Science and Technology Policy any relevant existing financial support that can be used to assist Qualifying Projects, consistent with the protection of national security.

The EO reinforces the Trump administration’s focus on AI and creates new opportunities for both AI data center developers and energy infrastructure companies providing power or project components to these data centers. Proactive engagement with relevant agencies will be crucial for capitalizing on the opportunities created by this EO and the broader AI Action Plan. By leveraging these financial and environmental incentives, project developers may be able to shorten permitting timelines, reduce costs, and take advantage of federal financial support.

---

Jason B. Hutt, Taylor M. Stuart and Anouk Nouet are lawyers at Bracewell. Hutt is chair of the firm’s environment, lands and resources department. Stuart counsels energy, infrastructure, and industrial clients on matters involving environmental and natural resources law and policy. Nouet advises clients on litigation, enforcement and project development matters with a focus on complex environmental and natural resources law and policy.

Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images.

Houston team’s discovery brings solid-state batteries closer to EV use

a better battery

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape.

The team, led by Yan Yao, the Hugh Roy and Lillie Cranz Cullen Distinguished Professor of Electrical and Computer Engineering at UH, recently published its findings in the journal Nature Communications.

The work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

“This research solves a long-standing mystery about why solid-state batteries sometimes fail,” Yao, corresponding author of the study, said in a news release. “This discovery allows solid-state batteries to operate under lower pressure, which can reduce the need for bulky external casing and improve overall safety.”

A solid-state battery replaces liquid electrolytes found in conventional lithium-ion cells with a solid separator, according to Car and Driver. They also boast faster recharging capabilities, better safety and higher energy density.

However, when it comes to EVs, solid-state batteries are not ideal since they require high external stack pressure to stay intact while operating.

Yao’s team learned that tiny empty spaces, or voids, form within the solid-state batteries and merge into a large gap, which causes them to fail. The team found that adding small amounts of alloying elements, like magnesium, can help close the voids and help the battery continue to function. The team captured it in real-time with high-resolution videos that showed what happens inside a battery while it’s working under a scanning electron microscope.

“By carefully adjusting the battery’s chemistry, we can significantly lower the pressure needed to keep it stable,” Lihong Zhao, the first author of this work, a former postdoctoral researcher in Yao’s lab and now an assistant professor of electrical and computer engineering at UH, said in the release. “This breakthrough brings solid-state batteries much closer to being ready for real-world EV applications.”

The team says it plans to build on the alloy concept and explore other metals that could improve battery performance in the future.

“It’s about making future energy storage more reliable for everyone,” Zhao added.

The research was supported by the U.S. Department of Energy’s Battery 500 Consortium under the Vehicle Technologies Program. Other contributors were Min Feng from Brown; Chaoshan Wu, Liqun Guo, Zhaoyang Chen, Samprash Risal and Zheng Fan from UH; and Qing Ai and Jun Lou from Rice.

What is the future of "the fifth utility"? Getty Images

Experts on U.S. energy infrastructure, sustainability, and the future of data

Guest column

Digital infrastructure is the dominant theme in energy and infrastructure, real estate and technology markets.

Data, the byproduct and primary value generated by digital infrastructure, is referred to as “the fifth utility,” along with water, gas, electricity and telecommunications. Data is created, aggregated, stored, transmitted, shared, traded and sold. Data requires data centers. Data centers require energy. The United States is home to approximately 40% of the world's data centers. The U.S. is set to lead the world in digital infrastructure advancement and has an opportunity to lead on energy for a very long time.

Data centers consume vast amounts of electricity due to their computational and cooling requirements. According to the United States Department of Energy, data centers consume “10 to 50 times the energy per floor space of a typical commercial office building.” Lawrence Berkeley National Laboratory issued a report in December 2024 stating that U.S. data center energy use reached 176 TWh by 2023, “representing 4.4% of total U.S. electricity consumption.” This percentage will increase significantly with near-term investment into high performance computing (HPC) and artificial intelligence (AI). The markets recognize the need for digital infrastructure build-out and, developers, engineers, investors and asset owners are responding at an incredible clip.

However, the energy demands required to meet this digital load growth pose significant challenges to the U.S. power grid. Reliability and cost-efficiency have been, and will continue to be, two non-negotiable priorities of the legal, regulatory and quasi-regulatory regime overlaying the U.S. power grid.

Maintaining and improving reliability requires physical solutions. The grid must be perfectly balanced, with neither too little nor too much electricity at any given time. Specifically, new-build, physical power generation and transmission (a topic worthy of another article) projects must be built. To be sure, innovative financial products such as virtual power purchase agreements (VPPAs), hedges, environmental attributes, and other offtake strategies have been, and will continue to be, critical to growing the U.S. renewable energy markets and facilitating the energy transition, but the U.S. electrical grid needs to generate and move significantly more electrons to support the digital infrastructure transformation.

But there is now a third permanent priority: sustainability. New power generation over the next decade will include a mix of solar (large and small scale, offsite and onsite), wind and natural gas resources, with existing nuclear power, hydro, biomass, and geothermal remaining important in their respective regions.

Solar, in particular, will grow as a percentage of U.S grid generation. The Solar Energy Industries Association (SEIA) reported that solar added 50 gigawatts of new capacity to the U.S. grid in 2024, “the largest single year of new capacity added to the grid by an energy technology in over two decades.” Solar is leading, as it can be flexibly sized and sited.

Under-utilized technology such as carbon capture, utilization and storage (CCUS) will become more prominent. Hydrogen may be a potential game-changer in the medium-to-long-term. Further, a nuclear power renaissance (conventional and small modular reactor (SMR) technologies) appears to be real, with recent commitments from some of the largest companies in the world, led by technology companies. Nuclear is poised to be a part of a “net-zero” future in the United States, also in the medium-to-long term.

The transition from fossil fuels to zero carbon renewable energy is well on its way – this is undeniable – and will continue, regardless of U.S. political and market cycles. Along with reliability and cost efficiency, sustainability has become a permanent third leg of the U.S. power grid stool.

Sustainability is now non-negotiable. Corporate renewable and low carbon energy procurement is strong. State renewable portfolio standards (RPS) and clean energy standards (CES) have established aggressive goals. Domestic manufacturing of the equipment deployed in the U.S. is growing meaningfully and in politically diverse regions of the country. Solar, wind and batteries are increasing less expensive. But, perhaps more importantly, the grid needs as much renewable and low carbon power generation as possible - not in lieu of gas generation, but as an increasingly growing pairing with gas and other technologies. This is not an “R” or “D” issue (as we say in Washington), and it's not an “either, or” issue, it's good business and a physical necessity.

As a result, solar, wind and battery storage deployment, in particular, will continue to accelerate in the U.S. These clean technologies will inevitably become more efficient as the buildout in the U.S. increases, investments continue and technology advances.

At some point in the future (it won’t be in the 2020s, it could be in the 2030s, but, more realistically, in the 2040s), the U.S. will have achieved the remarkable – a truly modern (if not entirely overhauled) grid dependent largely on a mix of zero and low carbon power generation and storage technology. And when this happens, it will have been due in large part to the clean technology deployment and advances over the next 10 to 15 years resulting from the current digital infrastructure boom.

---

Hans Dyke and Gabbie Hindera are lawyers at Bracewell. Dyke's experience includes transactions in the electric power and oil and gas midstream space, as well as transactions involving energy intensive industries such as data storage. Hindera focuses on mergers and acquisitions, joint ventures, and public and private capital market offerings.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston companies partner to advance industrial carbon capture tech

green team

Carbon Clean and Samsung E&A, both of which maintain their U.S. headquarters in Houston, have formed a partnership to accelerate the global use of industrial carbon capture systems.

Carbon Clean provides industrial carbon capture technology. Samsung E&A offers engineering, construction and procurement services. The companies say their partnership will speed up industrial decarbonization and make carbon capture more accessible for sectors that face challenges in decarbonizing their operations.

Carbon Clean says its fully modular columnless carbon capture unit, known as CycloneCC, is up to 50 percent smaller than traditional units and each "train" can capture up to 100,000 tonnes of CO2 per year.

“Our partnership with Samsung E&A marks a major milestone in scaling industrial carbon capture,” Aniruddha Sharma, chair and CEO of Carbon Clean, said in a news release.

Hong Namkoong, CEO of Samsung E&A, added that the partnership with Carbon Clean will accelerate the global rollout of carbon capture systems that “are efficient, reliable, and ready for the energy transition.”

Carbon Clean and Samsung E&A had previously worked together on carbon capture projects for Aramco, an oil and gas giant, and Modec, a supplier of floating production systems for offshore oil and gas facilities. Aramco’s Americas headquarters is also in Houston, as is Modec’s U.S. headquarters.

Major Houston energy companies join new Carbon Measures coalition

green team

Six companies with a large presence in the Houston area have joined a new coalition of companies pursuing a better way to track the carbon emissions of products they manufacture, purchase and finance.

Houston-area members of the Carbon Measures coalition are:

  • Spring-based ExxonMobil
  • Air Liquide, whose U.S. headquarters is in Houston
  • Mitsubishi Heavy Industries, whose U.S. headquarters is in Houston
  • Honeywell, whose Performance Materials and Technologies business is based in Houston.
  • BASF, whose global oilfield solutions business is based in Houston
  • Linde, whose Linde Engineering Americas business is based in Houston

Carbon Measures will create an accounting framework that eliminates double-counting of carbon pollution and attributes emissions to their sources, said Amy Brachio, the group’s CEO. The model is expected to take two years to develop, and between five and seven years to scale up, Bloomberg reported.

The coalition wants to create a system that will “unleash markets and competition,” unlock investments and speed up the pace of emissions reduction, said Brachio, former vice chair of sustainability at professional services firm EY.

“If you can’t measure it, you can’t manage it,” said Darren Woods, chairman and CEO of ExxonMobil. “The first step to reducing global emissions is to know where they’re coming from — and today, we don’t have an accurate system to do this.”

Other members of the coalition include BlackRock-owned Global Infrastructure Partners, Banco Satanader, EY and NextEra Energy.

“Transparent and consistent emissions accounting is not just a technical necessity — it’s a strategic imperative. It enables smarter decisions and accelerates real progress across industries and borders,” said Ken West, president and CEO of Honeywell Energy and Sustainability Solutions.

Wind and solar supplied over a third of ERCOT power, report shows

power report

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA).

The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024.

Together, wind and solar supplied 36 percent of ERCOT’s electricity in the first nine months of 2025.

Heavier reliance on wind and solar power comes amid greater demand for ERCOT electricity. In the first nine months of 2025, ERCOT recorded the fastest growth in electricity demand (5 percent) among U.S. power grids compared with the same period last year, according to the report.

“ERCOT’s electricity demand is forecast to grow faster than that of any other grid operator in the United States through at least 2026,” the report says.

EIA forecasts demand for ERCOT electricity will climb 14 percent in the first nine months of 2026 compared with the same period this year. This anticipated jump coincides with a number of large data centers and cryptocurrency mining facilities coming online next year.

The ERCOT grid covers about 90 percent of Texas’ electrical load.