Texas leaned heavily on clean energy in 2025. Photo via Pexels

2025 marked a pivotal year for Texas’ energy ecosystem. Rising demand, accelerating renewable integration, tightening reserve margins and growing industrial load reshaped the way policymakers, utilities and the broader market think about reliability.

This wasn’t just another year of operational challenges; it was a clear signal that the state is entering an era where growth and innovation must move together in unison if Texas is going to keep pace.

What happened in 2025 is already influencing the decisions utilities, regulators and large energy consumers will make in 2026 and beyond. If Texas is going to remain the nation’s proving ground for large-scale energy innovation, this year made one thing clear: we need every tool working together and working smarter.

What changed: Grid, policy & the growth of renewables

This year, ERCOT recorded one of the steepest demand increases in its history. From January through September 2025, electricity consumption reached 372 terawatt-hours (TWh), a 5 percent increase over the previous year and a 23 percent jump since 2021. That growth officially positions ERCOT as the fastest-expanding large grid in the country.

To meet this rising load, Texas leaned heavily on clean energy. Solar, wind and battery storage served approximately 36 percent of ERCOT’s electricity needs over the first nine months of the year, a milestone that showcased how quickly Texas has diversified its generation mix. Utility-scale solar surged to 45 TWh, up 50 percent year-over-year, while wind generation reached 87 TWh, a 36 percent increase since 2021.

Battery storage also proved its value. What was once niche is now essential: storage helped shift mid-day excess solar to evening peaks, especially during a historic week in early spring when Texas hit new highs for simultaneous wind, solar and battery output.

Still, natural gas remained the backbone of reliability. Dispatchable thermal resources supplied more than 50 percent of ERCOT’s power 92 percent of the time in Q3 2025. That dual structure of fast-growing renewables backed by firm gas generation is now the defining characteristic of Texas’s energy identity.

But growth cuts both ways. Intermittent generation is up, yet demand is rising faster. Storage is scaling, but not quite at the rate required to fill the evening reliability gap. And while new clean-energy projects are coming online rapidly, the reality of rising population, data center growth, electrification and heavy industrial expansion continues to outpace the additions.

A recent forecast from the Texas Legislative Study Group projects demand could climb another 14 percent by mid-2026, tightening reserve margins unless meaningful additions in capacity, or smarter systemwide usage, arrive soon.

What 2025 meant for the energy ecosystem

The challenges of 2025 pushed Texas to rethink reliability as a shared responsibility between grid operators, generation companies, large load customers, policymakers and consumers. The year underscored several realities:

1. The grid is becoming increasingly weather-dependent. Solar thrives in summer; wind dominates in spring and winter. But extreme heat waves and cold snaps also push demand to unprecedented levels. Reliability now hinges on planning for volatility, not just averages.

2. Infrastructure is straining under rapid load growth. The grid handled multiple stress events in 2025, but it required decisive coordination and emerging technologies, such as storage methods, to do so.

3. Innovation is no longer optional. Advanced forecasting, grid-scale batteries, demand flexibility tools, and hybrid renewable-gas portfolios are now essential components of grid stability.

4. Data centers and industrial electrification are changing the game. Large flexible loads present both a challenge and an opportunity. With proper coordination, they can help stabilize the grid. Without it, they can exacerbate conditions of scarcity.

Texas can meet these challenges, but only with intentional leadership and strong public-private collaboration.

The system-level wins of 2025

Despite volatility, 2025 showcased meaningful progress:

Renewables proved their reliability role. Hitting 36 percent of ERCOT’s generation mix for three consecutive quarters demonstrates that wind, solar and batteries are no longer supplemental — they’re foundational.

Storage emerged as a real asset for reliability. Battery deployments doubled their discharge records in early 2025, showing the potential of short-duration storage during peak periods.

The dual model works when balanced wisely. Natural gas continues to provide firm reliability during low-renewable hours. When paired with renewable growth, Texas gains resilience without sacrificing affordability.

Energy literacy increased across the ecosystem. Communities, utilities and even industrial facilities are paying closer attention to how loads, pricing signals, weather and grid conditions interact—a necessary cultural shift in a fast-changing market.

Where Texas goes in 2026

Texas heads into 2026 with several unmistakable trends shaping the road ahead. Rate adjustments will continue as utilities like CenterPoint request cost recovery to strengthen infrastructure, modernize outdated equipment and add the capacity needed to handle record-breaking growth in load.

At the same time, weather-driven demand is expected to stay unpredictable. While summer peaks will almost certainly set new records, winter is quickly becoming the bigger wild card, especially as natural gas prices and heating demand increasingly drive both reliability planning and consumer stress.

Alongside these pressures, distributed energy is set for real expansion. Rooftop solar, community battery systems and hybrid generation-storage setups are no longer niche upgrades; they’re quickly becoming meaningful grid assets that help support reliability at scale.

And underlying all of this is a cultural shift toward energy literacy. The utilities, regulators, businesses, and institutions that understand load flexibility, pricing signals and efficiency strategies will be the ones best positioned to manage costs and strengthen the grid. In a market that’s evolving this fast, knowing how we use energy matters just as much as knowing how much.

The big picture: 2025 as a blueprint for a resilient future

If 2025 showed us anything, it’s that Texas can scale innovation at a pace few states can match. We saw record renewable output, historic storage milestones and strong thermal performance during strain events. The Texas grid endured significant stress but maintained operational integrity.

But it also showed that reliability isn’t a static achievement; it’s a moving target. As population growth, AI and industrial electrification and weather extremes intensify, Texas must evolve from a reactive posture to a proactive one.

The encouraging part is that Texas has the tools, the talent and the market structure to build one of the most resilient and future-ready power ecosystems in the world. The test ahead isn’t whether we can generate enough power; it’s whether we can coordinate systems, technologies and market behavior fast enough to meet the moment.

And in 2026, that coordination is precisely where the opportunity lies.

———

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

Locksley Resources will provide antimony-rich feedstocks from a project in the Mojave Desert as part of a new partnership with Rice University that aims to develop scalable methods for extracting and utilizing antimony. Photo via locksleyresources.com.au.

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”

Nightpeak Energy's Bocanova Power project in Brazoria County has reached commercial operation. Photo courtesy Nightpeak Energy.

California company launches Tesla Megapack battery project in Houston area

power on

Oakland, California-based Nightpeak Energy announced earlier this month that its 150-megawatt battery storage project in Brazoria County, known as Bocanova Power, is now operating to address Houston’s peak capacity needs.

“This battery storage project will enhance grid reliability in the Alvin area while continuing to support integrating renewable energy,” Cary Perrin, president and CEO of the Northern Brazoria County Chamber of Commerce, said in a news release. “I believe we need energy storage now more than ever for its pivotal role in reducing strain on the grid while meeting fast-growing power demand in Texas and Brazoria County."

The project reached commercial operation in August, according to the release. The project utilizes Tesla's Megapack 2 XL battery storage system, and the facility operates under a long-term power purchase agreement with an undisclosed “investment-grade power purchaser.”

“Bocanova Power demonstrates the speed at which Nightpeak Energy is overcoming complex challenges to energize projects that support America's growing need for affordable, reliable, and secure energy,” Paris Hays, co-founder and CEO/CDO of Nightpeak Energy, added in the news release. “Unprecedented AI data center and manufacturing growth has only accelerated the need for these resources.”

Hays added in the release that the company has plans for more energy infrastructure projects in Texas and in the Western U.S.

Nightpeak Energy develops, owns and operates power plants that support the growing capacity needs of a decarbonized grid. It also owns and operates 240 MW of battery storage and natural gas generation facilities.

The company was founded in 2022 and backed by equity funding of up to $200 million from Dallas-based investment firm Energy Spectrum Capital.

A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

UH researchers make breakthrough in cutting carbon capture costs

Carbon breakthrough

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants.

Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team released two significant publications that made significant strides relating to carbon capture processes. The first, published in Nature Communications, introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process. Another, featured on the cover of ES&T Engineering, demonstrated a vanadium redox flow system capable of both capturing carbon and storing renewable energy.

“These publications reflect our group’s commitment to fundamental electrochemical innovation and real-world applicability,” Rahimi said in a news release. “From membraneless systems to scalable flow systems, we’re charting pathways to decarbonize hard-to-abate sectors and support the transition to a low-carbon economy.”

According to the researchers, the “A Membraneless Electrochemically Mediated Amine Regeneration for Carbon Capture” research paper marked the beginning of the team’s first focus. The research examined the replacement of costly ion-exchange membranes with gas diffusion electrodes. They found that the membranes were the most expensive part of the system, and they were also a major cause of performance issues and high maintenance costs.

The researchers achieved more than 90 percent CO2 removal (nearly 50 percent more than traditional approaches) by engineering the gas diffusion electrodes. According to PhD student and co-author of the paper Ahmad Hassan, the capture costs approximately $70 per metric ton of CO2, which is competitive with other innovative scrubbing techniques.

“By removing the membrane and the associated hardware, we’ve streamlined the EMAR workflow and dramatically cut energy use,” Hassan said in the news release. “This opens the door to retrofitting existing industrial exhaust systems with a compact, low-cost carbon capture module.”

The second breakthrough, published by PhD student Mohsen Afshari, displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge. The results suggested that the technology could potentially provide carbon removal and grid balancing when used with intermittent renewables, such as solar or wind power.

“Integrating carbon capture directly into a redox flow battery lets us tackle two challenges in one device,” Afshari said in the release. “Our front-cover feature highlights its potential to smooth out renewable generation while sequestering CO2.”

A new EO could streamline regulatory burdens for the development of data centers supporting AI. Getty Images

Energy experts: Executive order enhances federal permitting for AI data centers

Guest column

In an effort to accelerate the development of artificial intelligence, President Trump signed an executive order (EO) aimed at expediting the federal permitting process for data centers, particularly those supporting AI inference, training, simulation, or synthetic data generation.

Following the White House’s issuance of a broader AI Action Plan, the EO seeks to streamline regulatory burdens and utilize federal resources to encourage the development of data centers supporting AI, as well as the physical components and energy infrastructure needed to construct and provide power to these data centers.

Qualifying Projects

The EO directs several federal agencies to take actions to incentivize the development of “Qualifying Projects,” which the EO defines as “Data Centers” and “Covered Component Projects.” The EO defines “Data Center Projects” as facilities that require over 100 megawatts (MW) of new load dedicated to AI inference, training, simulation, or synthetic data generation. The EO defines Covered Component Projects as materials, products, and infrastructure that are required to build Data Center Projects or upon which Data Center Projects depend, including energy infrastructure projects like transmission lines and substations, dispatchable base load energy sources like natural gas, geothermal, and nuclear used principally to power Data Center Projects, and semiconductors and related equipment. For eligibility as a Qualifying Project, the project sponsor must commit at least $500 million in capital expenditures. Data Center Projects and Covered Component Projects may also meet the definition of Qualifying Project if they protect national security or are otherwise designated as Qualifying Projects by the Secretary of Defense, Secretary of the Interior, Secretary of Commerce, or Secretary of Energy.

Streamlining Permitting of Qualifying Projects

The EO outlines the following strategies aimed at improving the efficiency of environmental reviews and permitting for Qualifying Projects:

  • NEPA Applicability: The Council on Environmental Quality (CEQ), in coordination with relevant agencies, is directed to utilize existing and new categorical exclusions under the National Environmental Policy Act (NEPA) to cover actions related to Qualifying Projects, which “normally do not have a significant effect on the human environment.” The EO states that where federal financial assistance represents less than 50 percent of total project costs of a Qualifying Project, the Project shall be presumed not to be a “major Federal action” requiring NEPA review.
  • FAST-41: The Executive Director of the Federal Permitting Improvement Steering Council (FPISC) is empowered to designate a Qualifying Project as a “transparency project” under the Fixing America’s Surface Transportation Act (FAST-41) and expedite its transition from a transparency project to a “covered project” under FAST-41. FPISC is directed to consider all available options to designate a Qualifying Project as a FAST-41 covered project, even where the Qualifying Project may not be eligible.
  • EPA Permitting: The US Environmental Protection Agency (EPA) is directed to modify applicable regulations under several environmental protection statutes impacting the development of Qualifying Projects on federal and non-federal lands. EPA is also directed to develop guidance to expedite environmental reviews for identification and reuse of Brownfield and Superfund Sites suitable for Qualifying Projects. Importantly, state environmental permitting agencies are not subject to the EO.
  • Corps Permitting: The US Army Corps of Engineers is directed to review the nationwide permits issued under Section 404 of the Clean Water Act and Section 10 of the Rivers and Harbors Act of 1899 to determine whether an activity-specific nationwide permit is needed to facilitate the efficient permitting of activities related to Qualifying Projects.
  • Interior Permitting: The US Department of the Interior is directed to consult with the US Department of Commerce regarding the streamlining of Endangered Species Act consultations for Qualifying Projects, and to work with the US Department of Energy to identify federal lands that may be available for use by Qualifying Projects and offer appropriate authorizations to project sponsors.

Federal Incentives for Qualifying Projects

The EO also directs the US Secretary of Commerce to “launch an initiative to provide financial support for Qualifying Projects,” which may include loans, grants, tax incentives, and offtake agreements. The EO further directs all “relevant agencies” to identify and submit to the White House Office of Office of Science and Technology Policy any relevant existing financial support that can be used to assist Qualifying Projects, consistent with the protection of national security.

The EO reinforces the Trump administration’s focus on AI and creates new opportunities for both AI data center developers and energy infrastructure companies providing power or project components to these data centers. Proactive engagement with relevant agencies will be crucial for capitalizing on the opportunities created by this EO and the broader AI Action Plan. By leveraging these financial and environmental incentives, project developers may be able to shorten permitting timelines, reduce costs, and take advantage of federal financial support.

---

Jason B. Hutt, Taylor M. Stuart and Anouk Nouet are lawyers at Bracewell. Hutt is chair of the firm’s environment, lands and resources department. Stuart counsels energy, infrastructure, and industrial clients on matters involving environmental and natural resources law and policy. Nouet advises clients on litigation, enforcement and project development matters with a focus on complex environmental and natural resources law and policy.

Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images.

Houston team’s discovery brings solid-state batteries closer to EV use

a better battery

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape.

The team, led by Yan Yao, the Hugh Roy and Lillie Cranz Cullen Distinguished Professor of Electrical and Computer Engineering at UH, recently published its findings in the journal Nature Communications.

The work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

“This research solves a long-standing mystery about why solid-state batteries sometimes fail,” Yao, corresponding author of the study, said in a news release. “This discovery allows solid-state batteries to operate under lower pressure, which can reduce the need for bulky external casing and improve overall safety.”

A solid-state battery replaces liquid electrolytes found in conventional lithium-ion cells with a solid separator, according to Car and Driver. They also boast faster recharging capabilities, better safety and higher energy density.

However, when it comes to EVs, solid-state batteries are not ideal since they require high external stack pressure to stay intact while operating.

Yao’s team learned that tiny empty spaces, or voids, form within the solid-state batteries and merge into a large gap, which causes them to fail. The team found that adding small amounts of alloying elements, like magnesium, can help close the voids and help the battery continue to function. The team captured it in real-time with high-resolution videos that showed what happens inside a battery while it’s working under a scanning electron microscope.

“By carefully adjusting the battery’s chemistry, we can significantly lower the pressure needed to keep it stable,” Lihong Zhao, the first author of this work, a former postdoctoral researcher in Yao’s lab and now an assistant professor of electrical and computer engineering at UH, said in the release. “This breakthrough brings solid-state batteries much closer to being ready for real-world EV applications.”

The team says it plans to build on the alloy concept and explore other metals that could improve battery performance in the future.

“It’s about making future energy storage more reliable for everyone,” Zhao added.

The research was supported by the U.S. Department of Energy’s Battery 500 Consortium under the Vehicle Technologies Program. Other contributors were Min Feng from Brown; Chaoshan Wu, Liqun Guo, Zhaoyang Chen, Samprash Risal and Zheng Fan from UH; and Qing Ai and Jun Lou from Rice.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based NRG announces new CEO and succession plan

new leader

Houston-based NRG Energy Inc. announced Jan. 7 that it has appointed Robert J. Gaudette as president and CEO. Gaudette took over as president effective Jan. 7 and will assume the role of CEO April 30, coinciding with the company's next stockholder meeting.

Gaudette, who previously served as executive vice president and president of NRG Business and Wholesale Operations, will succeed Lawrence Coben in the leadership roles. Coben will remain an advisor to NRG through the end of the year and will also continue to serve as board chair until April 30. Antonio Carrillo, lead independent director at NRG, will take over as board chair.

"Rob has played a central role in strengthening NRG’s position as a leader in our industry through strategic growth, operational excellence, and customer-focused innovation," Coben said in the news release. "He is a strong, decisive leader with extensive knowledge of our business, markets, and customers. The Board and I are confident that Rob is the right person to lead NRG forward and take the NRG rocket ship to new heights. I can’t wait to see what comes next.”

Gaudette has been with NRG since 2001. He has served as EVP of NRG Business and Market Operations since 2022 and president of NRG Business and Market Operations since 2024. In these roles, he led NRG’s power generation and oversaw its portfolio of commercial and industrial products and services as well as its market operations, according to the company.

He has held various executive leadership roles at NRG. He earned his bachelor's degree in chemistry from The College of William and Mary and an MBA at Rice University, where he was a Jones Scholar. He also served four years as an Army officer.

“It is an honor to be appointed NRG’s next CEO at this transformative time for the energy sector and our company,” Gaudette said in the release. “With NRG’s electricity, natural gas and smart home portfolio, we are ideally positioned to meet America’s evolving energy needs. I am grateful to Larry and all my NRG colleagues, both past and present, who built our great company and positioned us for the future. I look forward to leading our incredible team to deliver affordable, resilient power for the customers and communities we serve, while creating substantial value for our shareholders.”

In addition to its traditional power generation and electricity businesses, NRG has been working to develop a 1-gigawatt virtual power plant by connecting thousands of decentralized energy sources by 2035 in an effort to meet Texas’ surging energy demands.

The company announced partnerships last year with two California-based companies to bolster home battery use and grow its network. NRG has said the VPP could provide energy to 200,000 homes during peak demand.

10+ must-attend Houston energy events happening in Q1 2026

Mark Your Calendar

Editor's note: With the new year comes a new slate of must-attend events for those in the Houston energy sector. We've rounded up a host of events to put on your calendar for Q1, including some that you can attend this month. Plus, other premier annual events will return in February and March 2026 and are currently offering early-bird, discounted registration. Book now.

Jan. 7-8 — AAPG Subsurface Energy to Power Workshop

This two-day AAPG workshop explores the expanding role of natural gas, geothermal, hydrogen, lithium, and uranium in accelerating electricity capacity. Participants will examine innovative solutions designed to reduce reliance on long-distance transmission lines, pipelines, and other costly infrastructure. Throughout the workshop, attendees will gain insight into both the technical deployment of subsurface resources and the land, legal, and permitting factors that influence project development.

This event begins Jan. 7 at Norris Conference Center at CityCentre. Register here.

Jan. 19-22 — PPIM 2026

The 38th international Pipeline Pigging & Integrity Management Conference and Exhibition takes place over four days at the George R. Brown Convention Center and the Hilton Americas. This industry forum is devoted exclusively to pigging for pipeline maintenance and inspection, engineering assessment, repair, risk management, and NDE. Two days of courses will take place Jan. 19-20, followed by the conference on Jan. 21-22, and the exhibition running Jan. 20-22. Register here.

Jan. 22 — MicroSeismic - Romancing Energy Forum

This forum will feature raw, unfiltered stories from the pioneers who changed the trajectory of American Shale. Attendees will gain insights into the playbooks, decisions, data, and lessons learned behind the biggest discoveries and engineering triumphs in modern energy. Keynote speakers include Tom and Diane Gates of Gates Ranch.

This event begins at 8 am on Jan. 22 at Norris Conference Center at CityCentre. Register here.

Jan. 22 — Houston Downton Luncheon: Beyond the Barrel: Pricing, Transition, and Geopolitics in 2026

Women's Energy Network Houston Chapter hosts this January lunch and learn featuring guest speaker Ha Nguyen with S&P Global Energy. Nguyen will discuss the global energy outlook for 2026, with a focus on strategic drivers, such as decarbonization and EV adoption, and a look at Houston's crucial role in the future of the U.S. market.

This event begins at 11:30 am on Jan. 22 at The Houston Club. Register here.

Feb. 18-20 — NAPE Summit Week 2026

NAPE is the energy industry’s marketplace for the buying, selling, and trading of prospects and producing properties. NAPE brings together all industry disciplines and companies of all sizes, and in 2026 it will introduce three new hubs — offshore, data centers, and critical minerals — for more insights, access, and networking opportunities. The event includes a summit, exhibition, and more.

This event begins Feb. 18 at George R. Brown Convention Center. Register here.

Feb. 24-26 — 2026 Energy HPC & AI Conference

The 2026 Energy HPC & AI Conference marks the 19th year for the Ken Kennedy Institute to convene experts from the energy industry, academia, and national labs to share breakthroughs for HPC and AI technologies. The conference returns to Houston with engaging speaker sessions, a technical talk program, networking receptions, add-on workshops, and more.

This event begins Feb. 24 at Rice University's BRC. Register here.

Feb. 26 — February Transition on Tap

Mix and mingle at Greentown Labs' first Transition on Tap event of the year. Meet the accelerator's newest startup members, who are working on innovations ranging from methane capture to emissions-free manufacturing processes to carbon management.

This event begins at 5:30 pm on Feb. 26 at Greentown Labs Houston. Register here.

March 2-4 — The Future Energy Summit

The Future Energy Summit is a premier global event bringing together visionaries, industry leaders, and energy experts to shape the future of energy. The second edition of the conference will provide a platform for groundbreaking discussions, cutting-edge technologies, and transformative strategies that will accelerate the energy transition.

This event begins March 2. Register here.

March 10-12 — World Hydrogen & Carbon Americas

S&P Global Energy brings together two leading events — Carbon Management Americas and World Hydrogen North America — to form a new must-attend event for those in the hydrogen and carbon industries. More than 800 senior leaders from across the energy value chain will attend this event featuring immersive roundtable discussions, hands-on training, real-world case studies, and unparalleled networking opportunities.

This event begins March 10 at Marriott Marquis Houston. Register here.

March 23-27 — CERAWeek 2026

CERAWeek 2026 will focus on "Convergence and Competition: Energy, Technology and Geopolitics." The industry's foremost thought leaders will convene in Houston to cultivate relationships and exchange transformative ideas during the annual event. Through the lens of 16 dynamic themes, CERAWeek 2026 will explore breakthroughs, cross-industry connections, and powerful partnerships that are accelerating the transformation of the global energy system.

This event begins March 23. Register here.

Japanese company launches solar module manufacturing at Houston-area plant

solar plant

A local subsidiary of a Japanese solar equipment manufacturer recently began producing solar modules at a new plant in Humble.

TOYO Co. Ltd.’s TOYO Solar LLC subsidiary can produce 1 gigawatt worth of solar modules per year at a 567,140-square-foot plant it leases in Lovett Industrial’s Nexus North Logistics Park on Greens Road. TOYO Solar’s next phase will accommodate 2.5 gigawatts’ worth of solar module manufacturing. The subsidiary eventually plans to expand manufacturing capacity to 6.5 gigawatts.

For now, TOYO Solar operates only one assembly line at the Humble plant. Once TOYO Solar has five assembly lines up and running, it could employ as many as 750 manufacturing workers there, according to Connect CRE.

TOYO says the plant enlarges its U.S. footprint “to be closer to the majority of its clients, meet the demand for American-made solar panels, and contribute to the growing demand for secure, sustainable energy solutions as demands on the grid continue to rise.”

Last month, TOYO purchased the remaining 24.99 percent stake in TOYO Solar to make it a wholly owned subsidiary. TOYO entered the Houston-area market through its 2024 acquisition of a majority stake in Solar Plus Technology Texas LLC.