University of Houston professor Xiaonan Shan and the rest of his research team are celebrating fresh funding from a federal grant. Photo via UH.edu

A team of scientists from the University of Houston, in collaboration with Howard University in Washington D.C., has received a $1 million award from the National Science Foundation for a project that aims to automate the discovery of new clean-energy catalysts.

The project, dubbed "Multidisciplinary High-Performance Computing and Artificial Intelligence Enabled Catalyst Design for Micro-Plasma Technologies in Clean Energy Transition," aims to use machine learning and AI to improve the efficiency of catalysts in hydrogen generation, carbon capture and energy storage, according to UH.

“This research directly contributes to these global challenges,” Jiefu Chen, the principal investigator of the project and associate professor of electrical and computer engineering, said in a statement. “This interdisciplinary effort ensures comprehensive and innovative solutions to complex problems.”

Chen is joined by Lars Grabow, professor of chemical and biomolecular engineering; Xiaonan Shan, associate professor of electrical and computing engineering; and Xuquing Wu, associate professor of information science technology. Su Yan, an associate professor of electrical engineering and computer science at Howard University, is collaborating on the project.

The University of Houston team: Xiaonan Shan, associate professor electrical and computing engineering, Jiefu Chen, associate professor of electrical and computer engineering, Lars Grabow, professor of chemical and biomolecular engineering, and Xuquing Wu, associate professor of information science technology. Photo via UH.edu

The team will create a robotic synthesis and testing facility that will automate the experimental testing and verification process of the catalyst design process, which traditionally is slow-going. It will implement AI and advanced, unsupervised machine learning techniques, and have a special focus on plasma reactions.

The project has four main focuses, according to UH.

  1. Using machine learning to discover materials for plasma-assisted catalytic reactions
  2. Developing a model to simulate complex interactions to better understand microwave-plasma-assisted heating
  3. Designing catalysts supports for efficient microwave-assisted reactions
  4. Developing a bench scale reactor to demonstrate the efficiency of the catalysts support system

Additionally, the team will put the funding toward the development of a multidisciplinary research and education program that will train students on using machine learning for topics like computational catalysis, applied electromagnetics and material synthesis. The team is also looking to partner with industry on related projects.

“This project will help create a knowledgeable and skilled workforce capable of addressing critical challenges in the clean energy transition,” Grabow added in a statement. “Moreover, this interdisciplinary project is going to be transformative in that it advances insights and knowledge that will lead to tangible economic impact in the not-too-far future.”

This spring, UH launched a new micro-credential course focused on other applications for AI and robotics in the energy industry.

Around the same time, Microsoft's famous renowned co-founder Bill Gates spoke at CERAWeek to a standing-room-only crowd on the future of the industry. Also founder of Breakthrough Energy, Gates addressed the topic of AI.

Texas has the most utility-scale solar capacity installed and is home to 20 percent of the overall U.S. solar fleet. Photo via Getty Images

Texas passes California on national report of top solar states

by the numbers

For the first time, Texas has passed California in the second quarter of 2024 to become the top solar state in the country.

The American Clean Power Association's quarterly market report found that, by adding 3,293 megawatts of new solar year-to-date, Texas has the most utility-scale solar capacity installed, comprising 20 percent of the overall U.S. solar fleet. The American Clean Power Association, which represents over 800 energy storage, wind, utility-scale solar, transmission, and clean hydrogen companies, found that Texas is home to 21,932 megawatts of capacity,

By utilizing clean energy initiatives, Texas included 1.6 gigawatts of new solar, 574 megawatts of storage, and 366 megawatts of onshore wind. With more than 28,000 megawatts, Texas had the highest volume of clean power development capacity in the second quarter. About 163,000 megawatts of capacity overall are in the works throughout the United States. Texas ranks No. 1 for total operating wind capacity and total operating solar capacity, and comes in second for operating storage capacity.

Texas again led in production levels with clean power construction projects nationally, which boasts more than 19,000 megawatts worth of clean power energy currently under construction. With almost 28.3 gigawatts in advanced development or under construction, Texas continues to come in at No.1, as California is next with over 16.4 gigawatts in the state’s project pipeline.

California added more than 1,900 megawatts of new clean power capacity in the second quarter, with its clean energy development behavior leaning more towards adding storage, which amounts to 60 percent of California’s year-to-date clean power installations.

According to the report from SmartAsset, the Lone Star State has the most clean energy capacity at 56,405 megawatts due to its sheer size for solar capacity, but continues to trail states with similar geographic characteristics in overall clean energy prevalence.

Another report published by the U.S. Energy Information Administration, says Texas will make up 35 percent of new utility-scale solar capacity in the U.S. this year, followed by California (10 percent) and Florida (6 percent).

While Texas’ solar efforts have shown positive trends, the state ranked No. 38 in a report by WalletHub that determined it was the thirteenth least green state.

Jupiter Power's Callisto I is up and running. Photo courtesy of jupiterpower.io

Houston clean energy storage facility goes online to power ERCOT grid

green light

A new battery energy storage facility in Houston is officially up and running to power the ERCOT grid with a supply of reliable, zero emissions power.

Jupiter Power announced the commercial operations launch of its 400-megawatt-hour battery facility, Callisto I, in central Houston on the site of the former HL&P H.O. Clarke fossil fuel power plant.

"Jupiter couldn't be prouder about bringing the Callisto I project online," Andy Bowman, CEO of Jupiter Power, says in a news release. "This project responds to lawmakers' calls to increase affordable and dispatchable new generation in an area where people need more power. Callisto I is the first energy storage project at this scale in the City of Houston and will help meet Houston's growing power needs while also increasing resiliency from extreme weather events."

The new project is Jupiter Power's ninth project to deliver energy storage to ERCOT — bringing its total ERCOT fleet to 1,375-megawatt-hour capacity — but its the first in the Houston area. The company is currently developing over 11,000 megawatts of projects across the country. Founded in 2017, Jupiter Power is headquartered in Austin and has offices in Houston and Chicago.

"The announcement of Jupiter Power's Callisto I Energy Storage project is significant and exciting for the region, as it's the first large-scale transmission-connected energy storage project in the City of Houston," Jane Stricker, senior vice president at the Greater Houston Partnership and executive director at the Houston Energy Transition Initiative, adds. "This critical project will help address peak power demand and is another great example of our region's leadership in scaling and deploying impactful solutions for an all the above energy future."

Among the company's financial backers is Houston-based EnCap Energy Transition, which invested in Jupiter Power via its Fund II.

Caliche says Sixth Street’s backing will enable it to expand its Golden Storage Triangle complex. Photo via calichestorage.com

Investor acquires majority stake in Houston energy storage, CCS co.

here's the deal

Investment firm Sixth Street has purchased a majority stake in Houston-based Caliche Development Partners, which focuses on buying, developing, and operating natural gas and gas storage facilities along with carbon sequestration projects.

Financial terms weren’t disclosed.

The deal includes Caliche’s Golden Triangle Storage facilities and carbon sequestration project in Beaumont, and its Central Valley Gas Storage facilities in Princeton, California.

Caliche says Sixth Street’s backing will enable it to expand its Golden Storage Triangle complex, including the addition of two natural gas caverns.

Caliche’s leadership will continue to oversee day-to-day operations and remain investors in the company. All employees in Caliche’s Texas and California offices and at its facilities are staying aboard.

“We continue to meet the growing demand for the storage of natural gas and industrial gasses, including helium and hydrogen, and provide the infrastructure for lower environmental impact forms of energy through our commitment to safety, deliverability, [and] asset integrity,” Dave Marchese, CEO of Caliche, says in a news release.

Richard Sberlati, a partner at Sixth Street, which has an office in Houston, says Caliche’s success “comes from a combined 65 years of collective storage experience, and we look forward to partnering with the company’s management as they further grow the business.”

Sixth Street’s acquisition of Caliche’s Texas business operations is expected to close in late 2024, and its acquisition of the California business operations is set to close in mid-2025.

Founded in 2016, Caliche announced in 2020 that it had arranged a $150 million debt facility with Houston-based investment firm Orion Infrastructure Capital. Two years later, Caliche gained $268 million in funding from Orion and Chicago-based asset management firm GCM Grosvenor.

Adena Power uses three patented materials to produce a sodium-based battery that delivers clean, safe, long-lasting energy storage. Photo via adenapower.com

Sodium-based battery startup joins Halliburton Labs

new cohort co.

An Ohio-based clean energy startup has joined Houston-based Halliburton Labs, an incubator for early-stage energy tech companies.

Adena Power uses three patented materials to produce a sodium-based battery that delivers clean, safe, long-lasting energy storage. The startup is trying to capitalize on the 100 terawatt-hour potential for energy storage in the U.S. grid.

“With Halliburton Labs’ support and operational expertise, Adena Power looks to accelerate scaling and take advantage of the high-growth market opportunity,” Nathan Cooley, co-founder and CEO of Adena Power, says in a news release.

Adena, founded in 2022, supplies energy storage batteries for the commercial, industrial, and utility sectors. The startup has collected funding from four investors, according to PitchBook: OhioXcelerate, Third Derivative, BRITE Energy Innovators, and For ClimateTech.

Adena’s addition to Halliburton Labs comes during a momentous year for the company. For example:

  • Adena won the People’s Choice Award at the National Renewable Energy Labs Industry Growth Forum.
  • Adena earned the MAKE IT (Manufacture of Advanced Key Energy Infrastructure Technologies) Prize from the U.S. Department of Energy.

“Our team is ready to collaborate with Adena to help them accelerate their growth to meet the demand for behind-the-meter storage solutions,” says Dale Winger, managing director of Halliburton Labs.

Halliburton Labs is a wholly owned subsidiary of Halliburton, a provider of products and services for the energy industry. The incubator will have pitches at the inaugural Houston Energy and Climate Startup Week next month.

Stafford-based Microvast named Yaser Ali as CFO. Photo via LinkedIn

Houston area battery company names new C-level leader

new hire

Houston-based battery technology innovation company, Microvast Holdings, announced the appointment of Yaser Ali as CFO. This is part of Microvast's efforts to strengthen its executive leadership team.

Ali most recently served as CFO of Vision Technologies since August 2022. He also previously held leadership finance roles at companies such as BayWa-R.E Solar and GreenFox Services. He was also a Regional Finance Controller at Amazon.

“I’m happy to share that I’m starting a new position as Chief Financial Officer at Microvast,” Ali said on his LinkedIn. ”Renowned for its cutting-edge cell technology and vertical integration capabilities, Microvast covers core battery chemistry to modules and packs, serving markets such as electric vehicles, energy storage, and battery components.”

Microvast considers itself a leader in the innovation and technology of lithium-ion batteries through the design, development, and manufacture of premier battery cells, modules, and packs for transportation, heavy equipment, and utility-scale energy storage systems.

The Staffford-based Microvast has also recently drawn $12 million from a $25 million secured debt facility provided by the company's founder, chairman, and CEO Yang Wu. The move helps streamline operations, including workforce reductions and consolidations within its U.S. battery division.

Recently, Microvast celebrated four years supplying its high-performance battery packs to eversum mobility solutions GmbH ("eVersum”), which helps support the company’s goals of electrification of next-generation autonomous eShuttle buses from eVersum. The batteries helped enhance “the accessibility and convenience of eShuttle buses while maintaining high performance and efficiency” according to a news release.

Microvast, which is headquartered just southwest of Houston in Stafford, has a market capitalization of $125.16 million, according to InvestingPro.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Geothermal exec on Houston expansion, commercialization and more

Q&A

Challenges in the energy transition often center around two questions: Where will organizations find the resources? And how will projects be financed?

XGS Energy's next-gen closed-loop geothermal well architecture addresses both issues head-on. The California-based company saw massive growth in the Houston market last year and recently completed a 100-meter field demonstration in central Texas, marking a major milestone for its technology's commercialization and potential for scale.

In an interview with EnergyCapital, Axel-Pierre Bois, XGS's Chief Technology Officer, shares what drew him to the geothermal space, why XGS is expanding in Houston and what the company's plans are for the year ahead.

How does XGS Energy's technology address the biggest challenges in geothermal energy?

XGS Energy is developing a geothermal system that decouples geothermal energy from its traditional dependence on water and geology to deliver affordable, clean energy anywhere there is hot rock.

Historically, geothermal resources have been hard to locate, as conventional systems require the overlap of hot rock, porous and permeable geology, and abundant water to produce energy, limiting their potential to a few select hot spots worldwide. Instead of relying on an underground fracture network that drives the geology and water requirements, the base component of XGS’s system is a single well, in which fluid is pumped to a hot rock resource and then returned to the surface through a tube-in-shell design, creating a sealed, closed loop. This allows XGS to produce geothermal energy anywhere where there is hot rock, unlocking terawatt-scale potential in the U.S. alone.

Geothermal systems have also struggled to secure project financing, as many systems have historically faced high levels of unplanned cost risk due to factors including water loss and production uncertainty. XGS’s sealed, closed-loop system ensures that it can provide reliable, predictable electricity throughout its lifespan. XGS also boosts the cost-competitiveness of its system through our major innovation, a proprietary thermally conductive materials system that is installed downhole around each well, increasing the heat transferred to the closed-loop system by 30-50%.

What has drawn you to a career in the geothermal energy space?

I have been in the subsurface industry for over 30 years, developing technical solutions for companies in the fields of geosciences, underground storage, upstream oil and gas, and geothermal heat harvesting to help improve their overall economic, ethical and environmental footprints. In 2009, I founded Curistec, a technology company providing research, engineering and technical services for geomechanics, wellbore integrity, well abandonment, cement design and cement and rock testing. A few years back, Curistec assisted with the Iceland Deep Drilling Project, helping to develop cement formulations for superhot geothermal well applications to enable drilling in high-temperature environments. As I looked toward the future, it became clear that next-generation geothermal technologies would transform the geothermal energy industry and open new markets worldwide. Curistec had been working closely with the XGS Energy team as technology partners for several years, so joining the team directly to help shape the technology development was an exciting opportunity to help develop and deploy a new system to unlock the full terawatt-scale potential of geothermal energy.

Tell us about the 100-meter field demonstration in central Texas completed in 2024 — what all did you and your team learn from the test?

Our 100-meter field demonstration in central Texas marked a significant step in our progress toward deploying geothermal energy in a commercial setting. With this field operation, we successfully demonstrated our ability to mix, pump and place our thermally conductive materials system at a commercial scale, using off-shelf tools and technologies. This was a significant milestone, taking us from theoretical models and laboratory tests to field-scale operations, proving that our novel geothermal system is operationally viable in real-world well conditions.

The completion of the Texas field demonstration advanced XGS into the new wave of geothermal innovators that are putting real steel in the ground. In 2024, we kicked off construction at our commercial-scale demonstration in California and are excited to share updates in the year ahead.

Last year, XGS Energy leased over 10,000 square feet of office space in Memorial City. How has Houston's business community and opportunities benefitted the company?

Houston, the epicenter of the oil and gas industry, has become a hub of energy innovation, offering attractive incentives for growing companies like XGS. The region’s workforce, which is home to some of the best subsurface engineers and operational talent in the energy sector, was a key factor for XGS when we were planning our operational roadmap. This expertise, paired with proximity to our partners in the field services industries, like cementing and drilling, is both apracticaland tactical advantage for XGS.

We’ve built a strong technical and operational team here at XGS, with experience from the oil and gas industry, utilities and power project developers. XGS is planning for continued growth in the Houston area, leveraging the region’s leading engineering and operational workforce and its intensifying interest in supporting the energy transition.

What are XGS Energy's goals for 2025?

In 2024, the XGS Energy team made significant progress toward our goal of providing clean, round-the-clock energy with our solid-state geothermal system. In 2025, XGS Energy will be focused on deploying its geothermal system at a commercial scale, starting with the completion of our full-scale prototype in California. XGS will also continue accelerating our commercial traction, expanding our already robust and highly differentiated geothermal resource evaluation toolkit, advancing our global project pipeline, and growing our team to strengthen our operational capability and capacity.

Environmentalists say Trump's energy order would subvert Endangered Species Act

In The News

Environmental groups concerned about loss of protections for vanishing animals see one of President Donald Trump’s early executive orders as a method of subverting the Endangered Species Act in the name of fossil fuel extraction and corporate interests.

Trump declared an energy emergency via executive order earlier this week amid a promise to “drill, baby, drill.” One section of the order states that the long-standing Endangered Species Act can’t be allowed to serve as an obstacle to energy development.

That language is a pathway to rolling back protections for everything from tiny birds like the golden-cheeked warbler to enormous marine mammals like the North Atlantic right whale, conservation groups said Wednesday. Some vowed to fight the order in court.

The Endangered Species Act has been a hurdle for the development of fossil fuels in the U.S. for decades, and weakening the act would accelerate the decline and potential extinction of numerous endangered species, including whales and sea turtles, said Gib Brogan, a campaign director with conservation group Oceana.

“This executive order, in a lot of ways, is a gift to the oil and gas industry and is being sold as a way to respond to the emergency declaration by President Trump,” Brogan said. “There is no emergency. The species continue to suffer. And this executive order will only accelerate the decline of endangered species in the United States.”

The Endangered Species Act has existed for more than 50 years and is widely credited by scientists and environmentalists with helping save iconic American species such as the bald eagle from extinction. A key section of the act directs federal agencies to work to conserve endangered and threatened species and use their authorities to protect them.

Trump's order declaring a national energy emergency took direct aim at the authority provided by the Endangered Species Act. It orders federal departments to treat energy production as an emergency, which could help expedite approval of energy projects that might otherwise be held up.

The order also convenes a committee to “identify obstacles to domestic energy infrastructure specifically deriving from implementation of the ESA or the Marine Mammal Protection Act,” another landmark conservation law. It states the committee could consider regulatory reforms, including “species listings,” as part of its work.

The Trump administration did not respond to a request for comment on the executive order. The order defines energy mostly as fossil fuels such as crude oil and and coal and does not include renewable energies such as wind power. It also states that energy production is an emergency because “an affordable and reliable domestic supply of energy is a fundamental requirement for the national and economic security of any nation.”

While environmentalists herald the Endangered Species Act as a landmark law, pro-development and free market interests have long criticized it for holding up the building of energy, infrastructure, housing and other projects. Some, including the influential Heartland Institute, applauded Trump's declaration of an energy emergency this week.

Conservatives have also decried the Endangered Species Act as inefficient. It took the U.S. Fish and Wildlife Service years to follow the process of potentially delisting the golden-cheeked warbler, a small songbird that breeds only in the forests of central Texas, said Connor Mighell, an attorney with Texas Public Policy Foundation, a free market research institute.

Trump's executive order could help stop the Endangered Species Act from resulting in drawn-out permitting processes and lengthy litigation, said Brent Bennett, energy policy director for Texas Public Policy Foundation.

“We're hoping that can improve some of the permitting processes and remove some of these barriers,” Bennett said.

But the act is critical to maintaining species threatened with extinction, environmentalists said. They cite whales such as the North Atlantic right whale, which numbers less than 400 and is vulnerable to collisions with ships and entanglement in fishing gear, as an example of an animal that must be protected under the act. The Rice's whale, which numbers even fewer and is vulnerable to disruption from oil drilling in the Gulf of Mexico, is another prime example, environmentalists said.

The nation's symbol, the bald eagle, is a perfect example of the importance and effectiveness of the Endangered Species Act, said Andrew Bowman, president of the conservation group Defenders of Wildlife.

“President Trump’s election to office did not come with a mandate to deny Americans a clean and healthy environment or destroy decades of conservation successes that have ensured the survival and recovery of some of America’s most iconic species, including the bald eagle, which was newly named our country’s national bird and is only with us today thanks to the Endangered Species Act," Bowman said.

Texas ranks as No. 2 manufacturing hub in U.S., behind only California

by the numbers

Texas ranks among the country’s biggest hubs for manufacturing, according to a new study.

The study, conducted by Chinese manufacturing components supplier YIJIN Hardware, puts Texas at No. 2 among the states when it comes to manufacturing-hub status. California holds the top spot.

YIJIN crunched data from the U.S. Census Bureau, International Trade Administration, and National Association of Manufacturers to analyze manufacturing activity in each state. The study weighed factors such as number of manufacturing establishments, number of manufacturing employees, total value of manufacturing output, total manufacturing exports and manufacturing’s share of a state’s gross domestic product.

Here are Texas’ figures for those categories:

  • 19,526 manufacturing establishments
  • 847,470 manufacturing employees
  • Total manufacturing output of $292.6 billion
  • Total manufacturing exports of $291.9 billion
  • 11.3 percent share of state GDP

According to Texas Economic Development & Tourism, the state’s largest manufacturing sectors include automotive, tech, petroleum, chemicals, and food and beverage.

“The Lone Star State is truly a manufacturing powerhouse,” the state agency says.

In an October speech, Texas Gov. Greg Abbott praised the state’s robust manufacturing industry.

“We are proud that Texas is home to a booming manufacturing sector,” he said. “Thanks to our strong manufacturing sector, ‘Made in Texas’ has never been a bigger brand.”

Houston is a cornerstone of Texas’ manufacturing industry. The region produces more than $75 billion worth of goods each year, according to the Greater Houston Partnership. That makes Houston the second-ranked U.S. metro area for manufacturing GDP. The more than 7,000 manufacturing establishments in the area employ over 223,000 people.

“As one of the most important industrial bases in the world, Houston has access to many global markets thanks to its central location within the U.S. and the Americas,” the partnership says.