Justin Lopas and Zach Dell founded Base Power in 2023 and are now expanding the company's electricity and backup battery offerings to Houston. Photo courtesy Base Power.

An Austin startup that sells electricity and couples it with backup power has entered the Houston market.

Base Power, which claims to be the first and only electricity provider to offer a backup battery, now serves the Houston-area territory served by Houston-based CenterPoint Energy. No solar equipment is required for Base Power’s backup batteries.

The company is initially serving customers in the Cy-Fair, Spring, Cinco Ranch and Mission Bend communities, and will expand to other Houston-area places in the future.

Base Power already serves customers in the Austin and Dallas-Fort Worth markets.

The company says it provides “a cost-effective alternative to generators and solar-battery systems in an increasingly unreliable power grid.”

“Houston represents one of the largest home backup markets in the world, largely due to dramatic weather events that strain the power grid,” says Base Power co-founder and CEO Zach Dell, son of Austin tech billionaire Michael Dell. “We’re eager to provide an accessible energy service that delivers affordable, reliable power to Houston homeowners.”

After paying a $495 or $995 fee that covers installation and permitting, and a $16- or $29-per-month membership fee, Base Power customers gain access to a backup battery and competitive energy rates, the company says. The startup is waiving the $495 setup fee for the first 500 Houston-area homeowners who sign up and make a refundable deposit.

With the Base Power backup package, electricity costs 14.3 cents per kilowatt-hour, which includes Base Power’s 8.5 cents per kilowatt-hour charge and rates charged by CenterPoint. The average electric customer in Houston pays 13 cents per kilowatt-hour, according to EnergySage.

“Base Power is built to solve a problem that so many Texans face: consistent power,” says Justin Lopas, co-founder and chief operating officer of Base Power and a former SpaceX engineer. “Houstonians can now redefine how they power their homes, while also improving the existing power grid.”

Founded in 2023, Base Power has attracted funding from investors such as Thrive Capital, Valor Equity Partners, Altimeter Capital, Trust Ventures, and Terrain. Zach Dell was previously an associate on the investment team at Thrive Capital.

Ace Green Recycling Inc. will build one of India's largest battery recycling facilities and plans to develop a flagship battery recycling plant in Texas. Photo courtesy Ace Green Recycling Inc.

Houston battery recycling co. expands globally with new India facility, Africa partnership

going global

Ace Green Recycling Inc., a Houston-operated sustainable battery recycling and technology solutions provider, announced it has finalized a lease agreement for a location to build one of India's largest battery recycling facilities in Mundra, Gujarat.

The facility will expand Ace's existing Indian commercial operations, which have been recycling lithium-ion batteries since 2023, including lithium iron phosphate ("LFP") chemistries.

The deployment of Ace’s LithiumFirst LFP battery recycling technology in India will coincide with the deployment of the company's technology in Texas. Last year, the company announced it planned to develop a flagship battery recycling plant in Texas for lead and lithium-ion batteries.

Ace also plans to establish 10,000 metric tons of LFP battery recycling capacity per year in India by 2026. The Mundra LFP battery recycling facility is expected to create up to 50 jobs.

The new facility plans to use Ace's LithiumFirst technology to recycle LFP batteries at room temperature in a fully electrified hydrometallurgical process that produces no direct (or Scope 1) carbon emissions and with zero liquid and solid waste.

"Ace's innovative technology enables profitable recycling of LFP batteries, even with the current low lithium price, by recovering significant amounts of these critical minerals,” Vipin Tyagi, Chief Technology Officer of Ace, said in a news release. “We believe that our successful operational demonstration positions us for future partnerships and collaborations that will unlock the full potential of our LithiumFirst technology in this market.”

Ace will also utilize its GreenLead recovery technology to recycle lead batteries at the new recycling park. The technology is considered a more environmentally friendly alternative to conventional smelting operations.

The company also reported visiting China for possible future expansion. According to a release, it launched a facility in Taiwan last year and is developing projects in Europe and Israel, as well.

Today, the company also announced that it was tapped by Spiro, one of Africa’s largest EV battery producers, as its global preferred recycling partner. According to a release, Ace will recycle end-of-life lithium-ion batteries, including LFP batteries, and waste from Spiro's battery manufacturing facilities.

Ace Green Recycling Inc. is headquartered in Houston and Singapore.

Under this partnership, Home Depot customers will be able to buy Sunnova’s Adaptive Home products, which includes solar power, battery storage, and smart energy management. Photo via Sunnova

Home Depot taps Houston company as exclusive solar, battery service partner

deal's on

Houston-based clean energy company Sunnova Energy International has been tapped as the exclusive provider of solar power and battery storage services for the more than 2,000 Home Depot stores in the U.S.

Under this partnership, Home Depot customers will be able to buy Sunnova’s Adaptive Home products. The Adaptive Home line combines solar power, battery storage, and smart energy management.

Sunnova didn’t assign a value to the Home Depot deal.

“Our goal is to make clean, affordable, and reliable energy services more accessible to everyone,” Michael Grasso, executive vice president and chief revenue officer at Sunnova, says in a news release. “As utility rates continue to skyrocket across the country, weather patterns worsen, and remote work becomes more prevalent, the need for resilient, affordable, and dependable power at the home is non-negotiable.”

In 2021, Sunnova rolled out its SunSafe solar and battery storage service at 100 Home Depot stores in hurricane-prone states like Florida, Maryland, and Virginia. A year later, Sunnova made the service available to all Home Depot stores in Puerto Rico.

In 2023, Sunnova expanded the SunSafe offering to 15 Home Depot markets, encompassing about 400 stores.

Publicly traded Sunnova, founded in 2012, had 419,200 customers at the end of last year.

The company recorded revenue of $720.7 million in 2023, up from $557.7 million the previous year. Its net loss in 2023 totaled $502.4 million, up from $130.3 million in 2022.

ERCOT will close 2023 with nearly 3.3 gigawatts of battery storage capacity and almost 10.7 gigawatts by the end of 2024. That would represent a one-year jump of 225 percent. Photo via Getty Images

Texas sees major increase in battery storage capacity, according to a new report

by the numbers

The Electric Reliability Council of Texas — which runs the power grid serving about 90 percent of the state — is energizing the rise of U.S. battery storage capacity.

A new report from data provider S&P Global Commodity Insights forecasts that ERCOT will close 2023 with nearly 3.3 gigawatts of battery storage capacity and almost 10.7 gigawatts by the end of 2024. That would represent a one-year jump of 225 percent.

Austin-based ERCOT is expected to add nearly 400 megawatts of battery storage capacity during the third quarter after adding no capacity in the second quarter, according to S&P Global.

In terms of bulking up battery storage capacity, ERCOT had a momentous first quarter. The nonprofit organization added 498.6 megawatts of battery storage capacity during the first three months of 2023, accounting for 70.2 percent of all new capacity in the U.S., says S&P Global.

One gigawatt, which equals one billion watts, can provide enough power for about 750,000 homes.

ERCOT’s battery storage capacity has contributed to a lack of power outages during this year’s scorching summer heat in Texas. However, it’s worth noting that this summer’s wave of triple-digit temperatures is straining the ERCOT grid, prompting a series of pleas for Texans to conserve energy.

ERCOT set a new September peak demand record of 78,459 megawatts September 4, surpassing the previous September peak of 72,370 megawatts set on September 1, 2021. The current all-time peak demand, 85,435 megawatts, was set August 10.

As of September 5, ERCOT has set 10 records this year for peak demand. In 2022, ERCOT set 11 peak demand records, surpassing 80 gigawatts for the first time.

“Based on expected weather conditions, ERCOT anticipates there will be sufficient generation to meet customer demand this summer,” ERCOT said in its forecast for summertime power demand.

ERCOT’s combined solar and wind share of overall power generation is projected to reach 43 percent by 2035, according to S&P Global.

“Firing on all green energy cylinders, despite a long-surpassed renewable portfolio standard,” says S&P Global, “Texas leads the U.S. in operating and planned wind energy as well as solar and battery storage capacity in development … .”

Houston is playing a pivotal role in Texas’ adoption of battery storage of wind and solar power, with companies like Broad Reach Power and Key Capture Energy among the leaders.

“Known for its strong ties with oil and gas, Texas and Houston in particular are changing the narrative on their relationships with energy, with new innovations and initiatives being created to combat the effects of climate change and to create better, more efficient energy systems for years to come,” says the Greater Houston Partnership.

More than three-fourths of the 20.8 gigawatts of utility-scale battery storage capacity on track to be installed from 2022 to 2025 will be in Texas (7.9 gigawatts) and California (7.6 gigawatts), according to the U.S. Energy Information Administration.

Houston-based Zeta Energy has fresh funding from the government. Image via Zeta Energy

Houston-based battery innovators receive $4M in federal funding

money moves

Houston-based Zeta Energy announced this week that it was selected to receive $4 million in federal funding for the development of efficient electric vehicle batteries.

The funds come from the U.S. Department of Energy's ARPA-E Electric Vehicles for American Low-Carbon Living, or EVs4ALL, program, which aims to increase the number of EVs on the roads by boosting the country’s supply chain of affordable, convenient, reliable and safe batteries.

Zeta Energy is one of 12 groups in the U.S. to receive funding from the program, which awarded $42 million in total.

“Electric vehicle sales in America have tripled since the start of this Administration and by addressing battery efficiency, resiliency and affordability, the projects announced today will make EVs attractive to even more drivers,” U.S. Secretary of Energy Jennifer M. Granholm said in a statement released in January. “This is a win-win for our efforts to fight climate change and power America’s clean transportation future with technologies produced by researchers and scientists right here at home.”

Other teams to receive funding include 24M Technologies, national laboratories and universities like The Ohio State University, University of Maryland, Virginia Tech, among others. Zeta is the only Texas-based company to receive funds. It received one of the largest grants among the group.

"We are thrilled to have been selected for funding by the ARPA-E EVs4ALL program," Zeta Energy CEO Tom Pilette said in a statement. "We have been working hard to make this technology a reality, and we are really grateful to receive this recognition of the promise of our technology and the progress we have made on it."

Zeta Energy is known for its lithium sulfur batteries that traditionally have not been long lasting. While sulfur is an economical and abundant material, it traditionally would dissolve after a few uses in lithium sulfur batteries.

However, Zeta uses its proprietary sulfur-based cathodes and lithium metal anodes that have shown to have higher capacity and density and better safety profiles, according to the company's website.

According to ARPAE, the company will create a new anode that will "be highly accessible and rechargeable" with the funding.

Zeta Energy closed a $23 million series A round led by New York VC firm Moore Strategic Ventures about a year ago. In addition to applications for electric vehicles, the company's technology is also expected to have uses in grid energy storage.

------

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

What EPA’s carbon capture and storage permitting announcement means for Texas

The View From HETI

Earlier this month, Texas was granted authority by the federal government for permitting carbon capture and storage (CCS) projects. This move could help the U.S. cut emissions while staying competitive in the global energy game.

In June, the U.S. Environmental Protection Agency (EPA) proposed approving Texas’ request for permitting authority under the Safe Drinking Water Act (SDWA) for Class VI underground injection wells for carbon capture and storage (CCS) in the state under a process called “primacy.” The State of Texas already has permitting authority for other injection wells (Classes I-V). In November, the EPA announced final approval of Texas’ primacy request.

Why This Matters for Texas

Texas is the headquarters for virtually every segment of the energy industry. According to the U.S. Energy Information Administration, Texas is the top crude oil- and natural-gas producing state in the nation. The state has more crude oil refineries and refining capacity than any other state in the nation. Texas produces more electricity than any other state, and the demand for electricity will grow with the development of data centers and artificial intelligence (AI). Simply put, Texas is the backbone of the nation’s energy security and competitiveness. For the nation’s economic competitiveness, it is important that Texas continue to produce more energy with less emissions. CCS is widely regarded as necessary to continue to lower the emissions intensity of the U.S. industrial sector for critical products including power generation, refining, chemicals, steel, cement and other products that our country and world demand.

The Greater Houston Partnership’s Houston Energy Transition Initiative (HETI) has supported efforts to bring CCUS to a broader commercial scale since the initiative’s inception.

“Texas is uniquely positioned to deploy CCUS at scale, with world-class geology, a skilled workforce, and strong infrastructure. We applaud the EPA for granting Texas the authority to permit wells for CCUS, which we believe will result in safe and efficient permitting while advancing technologies that strengthen Texas’ leadership in the global energy market,” said Jane Stricker, Executive Director of HETI and Senior Vice President, Energy Transition at the Greater Houston Partnership.

What is Primacy, and Why is it Important?

Primacy grants permitting authority for Class VI wells for CCS to the Texas Railroad Commission instead of the EPA. Texas is required to follow the same strict standards the EPA uses. The EPA has reviewed Texas’ application and determined it meets those requirements.

Research suggests that Texas has strong geological formations for CO2 storage, a world-class, highly skilled workforce, and robust infrastructure primed for the deployment of CCS. However, federal permitting delays are stalling billions of dollars of private sector investment. There are currently 257 applications under review, nearly one-quarter of which are located in Texas, with some applications surpassing the EPA’s target review period of 24 months. This creates uncertainty for developers and investors and keeps thousands of potential jobs out of reach. By transferring permitting to the state, Texas will apply local resources to issue Class VI permits across the states in a timely manner.

Texas joins North Dakota, Wyoming, Louisiana, West Virginia and Arizona with the authority for regulating Class VI wells.

Is CCS safe?

A 2025 study by Texas A&M University reviewed operational history and academic literature on CCS in the United States. The study analyzed common concerns related to CCS efficacy and safety and found that CCS reduces pollutants including carbon dioxide, particulate matter, sulfur oxides and nitrogen oxides. The research found that the risks of CCS present a low probability of impacting human life and can be effectively managed through existing state and federal regulations and technical monitoring and safety protocols.

What’s Next?

The final rule granting Texas’ primacy will become effective 30 days after publication in the Federal Register. Once in effect, the Texas Railroad Commission will be responsible for permitting wells for carbon capture, use and storage and enforcing their safe operation.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Houston energy expert: How the U.S. can turn carbon into growth

Guets Column

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

UH launches new series on AI’s impact on the energy sector

where to be

The University of Houston's Energy Transition Institute has launched a new Energy in Action Seminar Series that will feature talks focused on the intersection of the energy industry and digitization trends, such as AI.

The first event in the series took place earlier this month, featuring Raiford Smith, global market lead for power & energy for Google Cloud, who presented "AI, Energy, and Data Centers." The talk discussed the benefits of widespread AI adoption for growth in traditional and low-carbon energy resources.

Future events include:

“Through this timely and informative seminar series, ETI will bring together energy professionals, researchers, students, and anyone working in or around digital innovation in energy," Debalina Sengupta, chief operating officer of ETI, said in a news release. "We encourage industry members and students to register now and reap the benefits of participating in both the seminar and the reception, which presents a fantastic opportunity to stay ahead of industry developments and build a strong network in the Greater Houston energy ecosystem.”

The series is slated to continue throughout 2026. Each presentation is followed by a one-hour networking reception. Register for the next event here.