Justin Lopas and Zach Dell founded Base Power in 2023 and are now expanding the company's electricity and backup battery offerings to Houston. Photo courtesy Base Power.

An Austin startup that sells electricity and couples it with backup power has entered the Houston market.

Base Power, which claims to be the first and only electricity provider to offer a backup battery, now serves the Houston-area territory served by Houston-based CenterPoint Energy. No solar equipment is required for Base Power’s backup batteries.

The company is initially serving customers in the Cy-Fair, Spring, Cinco Ranch and Mission Bend communities, and will expand to other Houston-area places in the future.

Base Power already serves customers in the Austin and Dallas-Fort Worth markets.

The company says it provides “a cost-effective alternative to generators and solar-battery systems in an increasingly unreliable power grid.”

“Houston represents one of the largest home backup markets in the world, largely due to dramatic weather events that strain the power grid,” says Base Power co-founder and CEO Zach Dell, son of Austin tech billionaire Michael Dell. “We’re eager to provide an accessible energy service that delivers affordable, reliable power to Houston homeowners.”

After paying a $495 or $995 fee that covers installation and permitting, and a $16- or $29-per-month membership fee, Base Power customers gain access to a backup battery and competitive energy rates, the company says. The startup is waiving the $495 setup fee for the first 500 Houston-area homeowners who sign up and make a refundable deposit.

With the Base Power backup package, electricity costs 14.3 cents per kilowatt-hour, which includes Base Power’s 8.5 cents per kilowatt-hour charge and rates charged by CenterPoint. The average electric customer in Houston pays 13 cents per kilowatt-hour, according to EnergySage.

“Base Power is built to solve a problem that so many Texans face: consistent power,” says Justin Lopas, co-founder and chief operating officer of Base Power and a former SpaceX engineer. “Houstonians can now redefine how they power their homes, while also improving the existing power grid.”

Founded in 2023, Base Power has attracted funding from investors such as Thrive Capital, Valor Equity Partners, Altimeter Capital, Trust Ventures, and Terrain. Zach Dell was previously an associate on the investment team at Thrive Capital.

Ace Green Recycling Inc. will build one of India's largest battery recycling facilities and plans to develop a flagship battery recycling plant in Texas. Photo courtesy Ace Green Recycling Inc.

Houston battery recycling co. expands globally with new India facility, Africa partnership

going global

Ace Green Recycling Inc., a Houston-operated sustainable battery recycling and technology solutions provider, announced it has finalized a lease agreement for a location to build one of India's largest battery recycling facilities in Mundra, Gujarat.

The facility will expand Ace's existing Indian commercial operations, which have been recycling lithium-ion batteries since 2023, including lithium iron phosphate ("LFP") chemistries.

The deployment of Ace’s LithiumFirst LFP battery recycling technology in India will coincide with the deployment of the company's technology in Texas. Last year, the company announced it planned to develop a flagship battery recycling plant in Texas for lead and lithium-ion batteries.

Ace also plans to establish 10,000 metric tons of LFP battery recycling capacity per year in India by 2026. The Mundra LFP battery recycling facility is expected to create up to 50 jobs.

The new facility plans to use Ace's LithiumFirst technology to recycle LFP batteries at room temperature in a fully electrified hydrometallurgical process that produces no direct (or Scope 1) carbon emissions and with zero liquid and solid waste.

"Ace's innovative technology enables profitable recycling of LFP batteries, even with the current low lithium price, by recovering significant amounts of these critical minerals,” Vipin Tyagi, Chief Technology Officer of Ace, said in a news release. “We believe that our successful operational demonstration positions us for future partnerships and collaborations that will unlock the full potential of our LithiumFirst technology in this market.”

Ace will also utilize its GreenLead recovery technology to recycle lead batteries at the new recycling park. The technology is considered a more environmentally friendly alternative to conventional smelting operations.

The company also reported visiting China for possible future expansion. According to a release, it launched a facility in Taiwan last year and is developing projects in Europe and Israel, as well.

Today, the company also announced that it was tapped by Spiro, one of Africa’s largest EV battery producers, as its global preferred recycling partner. According to a release, Ace will recycle end-of-life lithium-ion batteries, including LFP batteries, and waste from Spiro's battery manufacturing facilities.

Ace Green Recycling Inc. is headquartered in Houston and Singapore.

Under this partnership, Home Depot customers will be able to buy Sunnova’s Adaptive Home products, which includes solar power, battery storage, and smart energy management. Photo via Sunnova

Home Depot taps Houston company as exclusive solar, battery service partner

deal's on

Houston-based clean energy company Sunnova Energy International has been tapped as the exclusive provider of solar power and battery storage services for the more than 2,000 Home Depot stores in the U.S.

Under this partnership, Home Depot customers will be able to buy Sunnova’s Adaptive Home products. The Adaptive Home line combines solar power, battery storage, and smart energy management.

Sunnova didn’t assign a value to the Home Depot deal.

“Our goal is to make clean, affordable, and reliable energy services more accessible to everyone,” Michael Grasso, executive vice president and chief revenue officer at Sunnova, says in a news release. “As utility rates continue to skyrocket across the country, weather patterns worsen, and remote work becomes more prevalent, the need for resilient, affordable, and dependable power at the home is non-negotiable.”

In 2021, Sunnova rolled out its SunSafe solar and battery storage service at 100 Home Depot stores in hurricane-prone states like Florida, Maryland, and Virginia. A year later, Sunnova made the service available to all Home Depot stores in Puerto Rico.

In 2023, Sunnova expanded the SunSafe offering to 15 Home Depot markets, encompassing about 400 stores.

Publicly traded Sunnova, founded in 2012, had 419,200 customers at the end of last year.

The company recorded revenue of $720.7 million in 2023, up from $557.7 million the previous year. Its net loss in 2023 totaled $502.4 million, up from $130.3 million in 2022.

ERCOT will close 2023 with nearly 3.3 gigawatts of battery storage capacity and almost 10.7 gigawatts by the end of 2024. That would represent a one-year jump of 225 percent. Photo via Getty Images

Texas sees major increase in battery storage capacity, according to a new report

by the numbers

The Electric Reliability Council of Texas — which runs the power grid serving about 90 percent of the state — is energizing the rise of U.S. battery storage capacity.

A new report from data provider S&P Global Commodity Insights forecasts that ERCOT will close 2023 with nearly 3.3 gigawatts of battery storage capacity and almost 10.7 gigawatts by the end of 2024. That would represent a one-year jump of 225 percent.

Austin-based ERCOT is expected to add nearly 400 megawatts of battery storage capacity during the third quarter after adding no capacity in the second quarter, according to S&P Global.

In terms of bulking up battery storage capacity, ERCOT had a momentous first quarter. The nonprofit organization added 498.6 megawatts of battery storage capacity during the first three months of 2023, accounting for 70.2 percent of all new capacity in the U.S., says S&P Global.

One gigawatt, which equals one billion watts, can provide enough power for about 750,000 homes.

ERCOT’s battery storage capacity has contributed to a lack of power outages during this year’s scorching summer heat in Texas. However, it’s worth noting that this summer’s wave of triple-digit temperatures is straining the ERCOT grid, prompting a series of pleas for Texans to conserve energy.

ERCOT set a new September peak demand record of 78,459 megawatts September 4, surpassing the previous September peak of 72,370 megawatts set on September 1, 2021. The current all-time peak demand, 85,435 megawatts, was set August 10.

As of September 5, ERCOT has set 10 records this year for peak demand. In 2022, ERCOT set 11 peak demand records, surpassing 80 gigawatts for the first time.

“Based on expected weather conditions, ERCOT anticipates there will be sufficient generation to meet customer demand this summer,” ERCOT said in its forecast for summertime power demand.

ERCOT’s combined solar and wind share of overall power generation is projected to reach 43 percent by 2035, according to S&P Global.

“Firing on all green energy cylinders, despite a long-surpassed renewable portfolio standard,” says S&P Global, “Texas leads the U.S. in operating and planned wind energy as well as solar and battery storage capacity in development … .”

Houston is playing a pivotal role in Texas’ adoption of battery storage of wind and solar power, with companies like Broad Reach Power and Key Capture Energy among the leaders.

“Known for its strong ties with oil and gas, Texas and Houston in particular are changing the narrative on their relationships with energy, with new innovations and initiatives being created to combat the effects of climate change and to create better, more efficient energy systems for years to come,” says the Greater Houston Partnership.

More than three-fourths of the 20.8 gigawatts of utility-scale battery storage capacity on track to be installed from 2022 to 2025 will be in Texas (7.9 gigawatts) and California (7.6 gigawatts), according to the U.S. Energy Information Administration.

Houston-based Zeta Energy has fresh funding from the government. Image via Zeta Energy

Houston-based battery innovators receive $4M in federal funding

money moves

Houston-based Zeta Energy announced this week that it was selected to receive $4 million in federal funding for the development of efficient electric vehicle batteries.

The funds come from the U.S. Department of Energy's ARPA-E Electric Vehicles for American Low-Carbon Living, or EVs4ALL, program, which aims to increase the number of EVs on the roads by boosting the country’s supply chain of affordable, convenient, reliable and safe batteries.

Zeta Energy is one of 12 groups in the U.S. to receive funding from the program, which awarded $42 million in total.

“Electric vehicle sales in America have tripled since the start of this Administration and by addressing battery efficiency, resiliency and affordability, the projects announced today will make EVs attractive to even more drivers,” U.S. Secretary of Energy Jennifer M. Granholm said in a statement released in January. “This is a win-win for our efforts to fight climate change and power America’s clean transportation future with technologies produced by researchers and scientists right here at home.”

Other teams to receive funding include 24M Technologies, national laboratories and universities like The Ohio State University, University of Maryland, Virginia Tech, among others. Zeta is the only Texas-based company to receive funds. It received one of the largest grants among the group.

"We are thrilled to have been selected for funding by the ARPA-E EVs4ALL program," Zeta Energy CEO Tom Pilette said in a statement. "We have been working hard to make this technology a reality, and we are really grateful to receive this recognition of the promise of our technology and the progress we have made on it."

Zeta Energy is known for its lithium sulfur batteries that traditionally have not been long lasting. While sulfur is an economical and abundant material, it traditionally would dissolve after a few uses in lithium sulfur batteries.

However, Zeta uses its proprietary sulfur-based cathodes and lithium metal anodes that have shown to have higher capacity and density and better safety profiles, according to the company's website.

According to ARPAE, the company will create a new anode that will "be highly accessible and rechargeable" with the funding.

Zeta Energy closed a $23 million series A round led by New York VC firm Moore Strategic Ventures about a year ago. In addition to applications for electric vehicles, the company's technology is also expected to have uses in grid energy storage.

------

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH's $44 million mass timber building slashed energy use in first year

building up

The University of Houston recently completed assessments on year one of the first mass timber project on campus, and the results show it has had a major impact.

Known as the Retail, Auxiliary, and Dining Center, or RAD Center, the $44 million building showed an 84 percent reduction in predicted energy use intensity, a measure of how much energy a building uses relative to its size, compared to similar buildings. Its Global Warming Potential rating, a ratio determined by the Intergovernmental Panel on Climate Change, shows a 39 percent reduction compared to the benchmark for other buildings of its type.

In comparison to similar structures, the RAD Center saved the equivalent of taking 472 gasoline-powered cars driven for one year off the road, according to architecture firm Perkins & Will.

The RAD Center was created in alignment with the AIA 2030 Commitment to carbon-neutral buildings, designed by Perkins & Will and constructed by Houston-based general contractor Turner Construction.

Perkins & Will’s work reduced the building's carbon footprint by incorporating lighter mass timber structural systems, which allowed the RAD Center to reuse the foundation, columns and beams of the building it replaced. Reused elements account for 45 percent of the RAD Center’s total mass, according to Perkins & Will.

Mass timber is considered a sustainable alternative to steel and concrete construction. The RAD Center, a 41,000-square-foot development, replaced the once popular Satellite, which was a food, retail and hangout center for students on UH’s campus near the Science & Research Building 2 and the Jack J. Valenti School of Communication.

The RAD Center uses more than a million pounds of timber, which can store over 650 metric tons of CO2. Aesthetically, the building complements the surrounding campus woodlands and offers students a view both inside and out.

“Spaces are designed to create a sense of serenity and calm in an ecologically-minded environment,” Diego Rozo, a senior project manager and associate principal at Perkins & Will, said in a news release. “They were conceptually inspired by the notion of ‘unleashing the senses’ – the design celebrating different sights, sounds, smells and tastes alongside the tactile nature of the timber.”

In addition to its mass timber design, the building was also part of an Energy Use Intensity (EUI) reduction effort. It features high-performance insulation and barriers, natural light to illuminate a building's interior, efficient indoor lighting fixtures, and optimized equipment, including HVAC systems.

The RAD Center officially opened Phase I in Spring 2024. The third and final phase of construction is scheduled for this summer, with a planned opening set for the fall.

Experts on U.S. energy infrastructure, sustainability, and the future of data

Guest column

Digital infrastructure is the dominant theme in energy and infrastructure, real estate and technology markets.

Data, the byproduct and primary value generated by digital infrastructure, is referred to as “the fifth utility,” along with water, gas, electricity and telecommunications. Data is created, aggregated, stored, transmitted, shared, traded and sold. Data requires data centers. Data centers require energy. The United States is home to approximately 40% of the world's data centers. The U.S. is set to lead the world in digital infrastructure advancement and has an opportunity to lead on energy for a very long time.

Data centers consume vast amounts of electricity due to their computational and cooling requirements. According to the United States Department of Energy, data centers consume “10 to 50 times the energy per floor space of a typical commercial office building.” Lawrence Berkeley National Laboratory issued a report in December 2024 stating that U.S. data center energy use reached 176 TWh by 2023, “representing 4.4% of total U.S. electricity consumption.” This percentage will increase significantly with near-term investment into high performance computing (HPC) and artificial intelligence (AI). The markets recognize the need for digital infrastructure build-out and, developers, engineers, investors and asset owners are responding at an incredible clip.

However, the energy demands required to meet this digital load growth pose significant challenges to the U.S. power grid. Reliability and cost-efficiency have been, and will continue to be, two non-negotiable priorities of the legal, regulatory and quasi-regulatory regime overlaying the U.S. power grid.

Maintaining and improving reliability requires physical solutions. The grid must be perfectly balanced, with neither too little nor too much electricity at any given time. Specifically, new-build, physical power generation and transmission (a topic worthy of another article) projects must be built. To be sure, innovative financial products such as virtual power purchase agreements (VPPAs), hedges, environmental attributes, and other offtake strategies have been, and will continue to be, critical to growing the U.S. renewable energy markets and facilitating the energy transition, but the U.S. electrical grid needs to generate and move significantly more electrons to support the digital infrastructure transformation.

But there is now a third permanent priority: sustainability. New power generation over the next decade will include a mix of solar (large and small scale, offsite and onsite), wind and natural gas resources, with existing nuclear power, hydro, biomass, and geothermal remaining important in their respective regions.

Solar, in particular, will grow as a percentage of U.S grid generation. The Solar Energy Industries Association (SEIA) reported that solar added 50 gigawatts of new capacity to the U.S. grid in 2024, “the largest single year of new capacity added to the grid by an energy technology in over two decades.” Solar is leading, as it can be flexibly sized and sited.

Under-utilized technology such as carbon capture, utilization and storage (CCUS) will become more prominent. Hydrogen may be a potential game-changer in the medium-to-long-term. Further, a nuclear power renaissance (conventional and small modular reactor (SMR) technologies) appears to be real, with recent commitments from some of the largest companies in the world, led by technology companies. Nuclear is poised to be a part of a “net-zero” future in the United States, also in the medium-to-long term.

The transition from fossil fuels to zero carbon renewable energy is well on its way – this is undeniable – and will continue, regardless of U.S. political and market cycles. Along with reliability and cost efficiency, sustainability has become a permanent third leg of the U.S. power grid stool.

Sustainability is now non-negotiable. Corporate renewable and low carbon energy procurement is strong. State renewable portfolio standards (RPS) and clean energy standards (CES) have established aggressive goals. Domestic manufacturing of the equipment deployed in the U.S. is growing meaningfully and in politically diverse regions of the country. Solar, wind and batteries are increasing less expensive. But, perhaps more importantly, the grid needs as much renewable and low carbon power generation as possible - not in lieu of gas generation, but as an increasingly growing pairing with gas and other technologies. This is not an “R” or “D” issue (as we say in Washington), and it's not an “either, or” issue, it's good business and a physical necessity.

As a result, solar, wind and battery storage deployment, in particular, will continue to accelerate in the U.S. These clean technologies will inevitably become more efficient as the buildout in the U.S. increases, investments continue and technology advances.

At some point in the future (it won’t be in the 2020s, it could be in the 2030s, but, more realistically, in the 2040s), the U.S. will have achieved the remarkable – a truly modern (if not entirely overhauled) grid dependent largely on a mix of zero and low carbon power generation and storage technology. And when this happens, it will have been due in large part to the clean technology deployment and advances over the next 10 to 15 years resulting from the current digital infrastructure boom.

---

Hans Dyke and Gabbie Hindera are lawyers at Bracewell. Dyke's experience includes transactions in the electric power and oil and gas midstream space, as well as transactions involving energy intensive industries such as data storage. Hindera focuses on mergers and acquisitions, joint ventures, and public and private capital market offerings.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

new findings

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.