Scott Nyquist on what the path to net-zero will look like. Graphic via mckinsey.com

The $275 trillion question: What does the road to net-zero look like?

That’s a good question, and McKinsey took a serious stab at providing an answer in a 2022 report, it considers the net-zero scenario described by the Network for Greening the Financial System (NGFS), a consortium of 105 central banks and financial institutions. McKinsey then describes the costs, benefits, and social and economic changes that would likely be required for the world to start, stay on, and finish the pathway described by the NGFS.

Here is what the report isn’t, and what it doesn’t do. It isn’t a roadmap to net zero, and it does not make predictions. Rather, it offers estimates related to one specific scenario. It does not say who should pay. It does not address adaptation. It doesn’t even assume that restricting global temperature rises to 1.5 degrees Celsius by 2050 is achievable. It doesn’t assert that this is the best or only way to of. Indeed, it notes that “it is likely that real outcomes will diverge from these estimates.”

What the report does do is more interesting: with rigor and thoughtfulness, it thinks through what a genuine, global effort to get to net zero would take. Here are a few insights from the report I found particularly noteworthy.

It won’t come cheap. Capital spending by 2050 under the NGFS scenario would add up to $275 trillion, or $9.2 trillion per year on average. That is about $3.5 trillion a year more than is being spent today, or the equivalent of about half of global corporate profits in 2020. In addition, about $1 trillion of current spending would need to shift from high- to low-emissions assets. In short, it’s a lot of money. Of course, some of these costs are also investments that will deliver returns, and indeed the share that do so will probably rise over the decades. Upfront spending now could also reduce operating costs down the line, through greater efficiency and lower maintenance costs. And it’s important to keep in mind the considerable benefit of a healthier planet and a stable climate, with cleaner air and richer land. But the authors do not shy away from the larger point: “Reaching net-zero emissions will thus require a transformation of the global economy.”

Some countries are going to be hit harder than others. It’s hardly surprising to read that countries like Saudi Arabia, Russia, and Venezuela, which rely heavily on oil and gas resources, are going to have a more difficult time adjusting. The same is true for many developing economies. To some extent their residents can leapfrog to cleaner, greener technologies, just as they skipped the landline in favor of cellphones. But other factors weigh in. For example, developing countries are more likely to have high-emissions manufacturing as a major share of the economy; services are generally lower emission. In addition, poorer countries still have to build much of their infrastructure, which is costly. All this adds up. The report estimates that India and sub-Saharan Africa would need to spend almost 11 percent of its GDP on physical assets related to energy and land to get to net zero; in other Asian countries and Latin America, it is more than 9 percent. For Europe and the United States, by contrast, the figure is about 6 percent.

Now is better than later. An orderly, gradual transition would likely be both gentler and cheaper than a hasty, disorderly one. The report sees spending as “frontloaded,” meaning that there is more of it in the next decade to 15 years, and then it declines. That is because of the need for substantial capital investment. But why does this matter? There is timing, for one thing. If low emissions sources do not increase as fast (or preferably faster) than high-emissions ones are retired, there will be shortages or price rises. Both would be unpleasant, and could also cut into public support for change. And then there is the matter of money. If a coal plant is built today—as many are—and then has to be shut down, abruptly and well before its useful life over, a lot of money that was invested in it will never be recouped. The report estimates that as much as $2.1 trillion assets in the power sector alone could be stranded by 2050. Many of these assets are capitalized on the balance sheets of listed companies; shutting them down prematurely could bring bankruptcies and credit defaults, and that could affect the global financial system.

The world would look very different. Under the NGFS scenario, oil and gas production volumes in 2050 would be 55 percent and 70 percent lower, respectively, and coal would just about vanish. The market share for battery or fuel cell-electric vehicles would be close to 100 percent. Many existing jobs would disappear, and because these assets tend to be geographically concentrated, the effects on local communities would be harsh. For example, more than 10 percent of jobs in 44 US counties are in the coal, oil and gas, fossil fuel power, and automotive sectors. On the whole, McKinsey estimates that the transition could mean the loss of 187 million jobs—but the creation of 202 million new ones. Reaching net zero would also make demands on individuals, such as switching to electric vehicles, making their homes more energy efficient, and eating less meat like beef and lamb (cows and sheep are ruminants, emitting methane, a greenhouse gas).

There’s a lot else worth thinking about in the report, which goes into some detail about forestry and agriculture, for example, as well as the role of climate finance and what can be done to fill technology gaps. And its closing sentence is worth pondering: “The key issue is whether the world can muster the requisite boldness and resolve to broaden its response during the next decade or so, which will in all likelihood decide the nature of the transition.”

So, is something like this going to happen? I don’t know. There is certainly momentum. As of January 27, 2022, 136 countries accounting for almost 90 percent of both emissions and GDP, have signed up to the idea. But these pledges are not cast in stone, or indeed in legislation, in many places, and as a rule policy is running far short of the promise. “Moving to action,” the report notes dryly, “has not proven easy or straightforward.”

And while some things can be done from the top down, others cannot—such as the considerable shift in human diets away from high-emissions (and delicious) beef and lamb and more toward poultry and legumes. Moreover, inertia and vested interests are powerful forces. “Government and business would need to act together with singular unity, resolve, and ingenuity, and extend their planning and investment horizons even as they take immediate actions to manage risks and capture opportunities,” the report concludes. That’s a big ask.

So, like McKinsey, I am not going to make predictions. But for an analysis of what it would take, this is a valuable effort.

———

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn on January 28, 2022.

Scott Nyquist on the future of technology and how they affect the energy industry. Photo via Getty Images

Houston expert: Where is tech going? And can the energy industry keep up?

guest column

When smart people come together to consider the future, it’s worth listening to them.

Not long ago, McKinsey brought together more than 60 experts, and asked them to name the most important technology trends for business. They started from the premise that the next 10 years will see more technological progress than in the previous 100 years—and that this will up-end companies and industries everywhere.

“We believe the technology disruption over the next few years will be equal to the industrial revolution,” says Nicolaus Henke, a McKinsey alum who participated in this Tech Trends Index, which will be updated annually.

Here are some of the specific predictions. More than three-quarters of enterprise-generated data will be processed by edge or cloud computing by 2025. Ten percent of global GDP could be associated with blockchain by 2027. Renewables will produce 75 percent of global energy by 2050. 5G could reach 80 percent of the world’s population by 2030.

Time will tell if any or all of these are right; personally, I think renewables will have to wait a little longer for that kind of dominance. But by and large, I found the list, and the underlying thinking, compelling. And given my background in oil-and-gas, I thought it was striking that parts of the energy industry are working on just about every single one of them. Here is the list:

  • Next-level process automation and visualization.
  • Future of connectivity.
  • Distributed infrastructure.
  • Next-generation computing.
  • Applied artificial intelligence (AI).
  • Future of programming.
  • Trust architecture.
  • Bio revolution.
  • Next-generation materials.
  • Future of clean technologies.

Specifically, the first half-dozen items are all connected to digitization, and while the energy industry may not be at the cutting edge of development, it has a long track record of integrating these technologies and safely deploying them in order to deliver low-cost and reliable supply.

For example, the oil and gas industry has used AI for years to evaluate reservoirs and to plan drilling—one of many improvements over the traditional “one rock, two geologists, three opinions" way of doing things. And advanced materials, such as composites, engineered polymers, and low-density/high-strength metals and alloys are commonly used to lower costs and improve performance, for example in deep water oil and gas production and rotating equipment. As for connectivity, there is no shortage of commitment, but I think it is fair to say that the full potential has not been tapped.

McKinsey has estimated that making use of advanced connectivity alone—to optimize drilling and production, as well as to improve maintenance and field operations—could translate into $250 billion in value by 2030. That is something that the industry could really use, given recent price fluctuations. Taken as a whole, while the industry is nowhere near completing a full digital transformation, it is certainly well on its way.

As for the item most clearly connected to the industry — No. 10, clean technologies — at first glance, this might seem like bad news for traditional energy players. Not so fast. There are clear opportunities in areas such as clean coal, carbon capture, and energy storage. Moreover, other kinds of clean technologies can help the industry decarbonize its operations—something that will become more important as carbon regulation gets more stringent.

As I see it, then, while parts of the industry may seem old-school, it is actually heavily engaged in almost everything on the list. That should come as no surprise. From the first time oil was pumped in Pennsylvania in 1859, it has innovated and adapted to integrate technologies that improved productivity, safety, and environmental performance. In fact, it could it could even be said that the sector is part of what is often known as the Fourth Industrial Revolution—the convergence and interaction of physical, digital, and biological technologies.

I, and many others in the industry, believe that the ongoing energy transition will likely suppress demand for fossil fuels in the long term. But while the items on the Tech Trends Index, together and separately, will be disruptive, requiring big changes in business models and day-to-day operations, they could also help the industry to adapt.

———

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn on October 4, 2021.

Methane emissions are rising—about 25 percent in the past 20 years, and still going up— but they are difficult to measure and track. What can be done? Photo via Canva

Houston expert: Moving the needle on methane emissions

guest column

Here’s the bad news. In 2019, methane (CH4) accounted for about 10 percent of all U.S. greenhouse gas emissions from human activities, such as those related to natural gas extraction and livestock farming. Methane doesn’t last as long in the atmosphere as carbon dioxide, but is more efficient at trapping radiation; over a 100-year period, the comparative impact of CH4 is 25 times greater than CO2. To put it another way, one metric ton of methane equals 84 metric tons of carbon dioxide (see chart). Finally, while methane emissions are rising—about 25 percent in the past 20 years, and still going up—they are difficult to measure and track.

No alt text provided for this image

Source: McKinsey.com

And here’s the good news. Five industries—agriculture, oil and gas, coal mining, solid waste management, and wastewater—account for almost all of human-made methane emissions. There are practical things these industries can do, right now, at reasonable cost and using existing technologies, that could cut emissions by almost half (46 percent) in 2050. That said, it will be easier for some industries than for others. Take agriculture. Most of its emissions come from cows and sheep, which produce methane during digestion; in fact, animals account for more carbon dioxide equivalent (CO₂e) emissions than every country except China, according to a recent McKinsey report. Dealing with billions of animals, dispersed on farms small and large all over the world is, to put it mildly, complicated. Certain kinds of feed additives, for example, can reduce the formation of methane, cow by cow—but is expensive ($50 per tCO₂e and up). This add costs to farmers, without any economic benefits to them, and makes food more expensive. That’s a tough sell.

On the other hand, the energy industry accounts for 20 to 25 percent of methane emissions; its operations are fairly consolidated, and there are significant resources and expertise at hand. Plus, in many cases, there are genuine economic opportunities. For example, plugging methane leaks means less gas gets lost. Large volumes of methane emissions that are now treated as a waste could be recovered and sold as natural gas—something that is not always economic to do, but could be as gas prices rise or conditions change. According to the International Energy Agency (IEA), the industry flares approximately 90 Mt of methane per year, losing $12 billion to $19 billion in value. Over time, too, normal maintenance and upgrading strategies can also reduce emissions, for example, by replacing pumps with instrument air systems. There are many different ways to prevent losses in upstream production, including leak detection and repair, equipment electrification, and vapor recovery units.

No alt text provided for this image

Source: McKinsey.com

In the short term, meaning over the next decade, the IEA says that these and other changes could reduce emissions 40 percent (at 2019 gas prices), while more than paying for themselves. In effect, there is low-hanging fruit out there. The full potential, according to McKinsey, is 75 percent fewer emissions by 2050, but to get there, things get more expensive, somewhere in the range of $20 per tCO₂e.

Naturally, oil and gas players are not eager to embrace added costs, and these will eventually be passed on to consumers. But the industry is looking at a future that is carbon-constrained in one way or another, either through a price on carbon, or regulation, or both. It might well be that addressing methane emissions provides a way to decarbonize its operations at reasonable cost. And while there is little brand equity to natural gas at the moment—no one shops for it by name—it is possible that in decades to come, companies that can show they are producing low- or zero-carbon gas might be able to command a price premium.

Much of the oil and gas industry doesn’t disagree with this analysis. The International Group of Liquefied Natural Gas Importers, a trade group, has made the case that “abating greenhouse gas emissions (from wellhead to terminal outlet), in particular fugitive methane emissions,” is important. On the oil side, the American Petroleum Institute, as part of its climate action plan, has called for the development of methane detection technologies, and reducing flaring to zero: “We support cost-effective policies and direct regulation that achieve methane emission reductions from new and existing sources across the supply chain.” And the Oil and Gas Climate Initiative, whose companies account for almost 30 percent of global production, are also on board, calling the reduction of methane emissions to near zero “a top priority.” Back in 2017, the Houston Chronicle, the home paper of the Texas oil and gas industry, argued for better practices: “If Texas wants the world to buy our LNG exports, a sign of environmental good faith would go a long way.” And in fact there has been progress: the OGCI estimates that methane emissions are have declined 33 percent from 2017-20.

On the whole, then, this looks like one area of climate policy where there is broad consensus. Methane matters. According to one science paper, dealing with it “could slow the global-mean rate of near-term decadal warming by around 30 percent.” Just the oil-and-gas industry’s share, then, could make a measurable difference. I am not saying getting methane emissions way down will be easy, but the industry knows what to do and how to do it. It is in its interest, and that of the planet, to do so.

------------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn on October 21, 2021.

The road, then, is not entirely smooth, but the direction is clear: EVs are on their way. Photo via Getty Images

EV technology is well on its way for lower carbon impact, Houston expert says

guest column

Are electric vehicles at a tipping point? In a word, yes.

And yes, I know that this has been said before — more than once. Predictions of electric vehicle sales have been notoriously over-optimistic. An article by my own company projected sales in New York could be as high as 16 percent by 2015; in fact, it was about 1 percent in 2020. But — and this has been said before, too — this time is different. The realities on the ground are catching up with the hope, or the hype, or both.

While there are only 11 million EVs on the road now, EV registrations rose more than 40 percent in 2020 — although car sales dropped 16 percent that year. So far in 2021, EV sales are up another 80 percent. In the United States, sales of EVs doubled as percent of the total between the second quarter of 2020 and the same period last year.

The momentum is real. What’s changed?

For one thing, global car manufacturers are re-tooling for EVs in a big way. It’s interesting that at the September auto show in Germany, almost all the models presented were electric, like this sleek saloon from Mercedes, which has announced plans to go all-electric by the end of the decade. GM, too, has said it wants all its vehicles to be emissions-free by 2035.

From 2020 through the first half of 2021, more than $100 billion was invested in EVs, and carmakers have announced more than $300 billion in additional investment. That money is producing hundreds of different models, meaning that there are vehicles available that normal people, not just enthusiasts, want to buy. All of the top 20 global auto manufacturers are investing big-time in EVs.

For another, while the sticker price for EVs is generally higher, the economics are improving. On a total-cost-of ownership basis—meaning how much they cost to run compared to conventional cars—they already make sense in many markets, particularly given rising gas prices. At the same time, widespread government subsidies to new EV buyers take some of the sting out of the sticker shock. As more vehicles are produced, costs will likely fall.

Finally, the market context is changing — quickly and radically. The European Union is proposing an effective ban on conventional cars by 2035, as is Britain. California and New York are both requiring that all new vehicles sold be zero-emissions by the same year. Japan has plans to phase out gas-powered cars over roughly the same period. The US federal government has set a 50 percent target for electrification and allocated serious money to charging infrastructure. The trend is clear: the future is electric.

I can’t say when that future will arrive, but I suspect it will be much faster than in the recent past and probably not as fast as the optimists would like. Global sales are forecast to reach 10.7 million by 2025 and more than 28 million by 2030. But, of course, forecasts have been wrong before. Remember, too, that cars and trucks have a long shelf life; a significant percentage of the 1.4 billion on the road now are going to be on the road a decade hence. In addition, there could be geopolitical and supply roadblocks in the form of limited supplies of components like nickel, cobalt, and lithium, which are used in the production of batteries. I suspect that innovation and ingenuity will find a way around if shortages do occur — as is already happening. But if the cost of alternatives is high, that could drive up prices and affect the overall economics of EVs.

The road, then, is not entirely smooth, but the direction is clear: EVs are on their way.

------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn.

Next month, 96 startups will pitch at an annual event focused on the future of energy. Here's who will be there. Photo via rice.edu

Exclusive: Rice Alliance announces participants ahead of 20th annual energy symposium

where to be

Dozens of companies will be a part of an upcoming energy-focused conference at Rice University — from climate tech startups to must-see keynote speakers.

The 20th Annual Rice Alliance Energy Tech Venture Forum will take place on September 21 at Rice University’s Jones Graduate School of Business. Anyone who's interested in learning more about the major players in the low-carbon future in Houston and beyond should join the industry leaders, investors, and promising energy and cleantech startups in attendance.

This year's keynote speakers include Christina Karapataki, partner at Breakthrough Energy Ventures, the venture capital fund backed by Bill Gates; Scott Nyquist, vice chairman at Houston Energy Transition Initiative, founded by the Greater Houston Partnership; and Jeff Tillery, COO at Veriten.

Nearly 100 startups will also be pitching throughout the day, and at the end of the program, the most-promising companies — according to investors — will be revealed. See below for the 2023 selection of companies.

Presenting companies:

  • Element Resources
  • Eugenie AI
  • Flash H2 Synthesis from Waste Plastic at Zero Net Cost
  • Fluid Efficiency
  • Galatea Technologies
  • Heimdal
  • Impact Technology SystemsAS
  • INGU
  • Lithos
  • Luminescent
  • Mantel
  • Mars Materials
  • Microgrid Labs
  • Mirico
  • Mobilus Labs
  • Muon Vision
  • Nano Nuclear
  • NobleAI
  • Numat
  • Ourobio
  • Planckton Data Technologies
  • Polystyvert
  • Princeton NuEnergy
  • Protein Evolution
  • Qult Technologies
  • Sage Geosystems
  • Salient Predictions
  • Sawback Technologies
  • SHORELINE AI
  • Solidec
  • Spectral Sensor Solutions
  • Teren
  • Terradote
  • TexPower
  • Thiozen
  • Technology from the Lab of Dr. James Tour
  • Volexion
  • Xecta

CEA Demo Day:

  • Ayrton Energy
  • Carbix
  • CryoDesalination
  • Digital Carbon Bank
  • EarthEn
  • H Quest Vanguard
  • Highwood Emissions Management
  • Icarus RT
  • Khepra
  • Natrion
  • Oceanways
  • Relyion Energy
  • Triton Anchor
  • TROES

Office hours only:

  • 1s1 Energy
  • AKOS Energy
  • Aperta Systems
  • Atargis Energy
  • Ayas
  • C-Power
  • C-Quester
  • Carbon Loop
  • Deep Anchor Solutions
  • DG Matrix
  • Drishya AI Labs
  • Earthbound.ai
  • EarthBridge Energy
  • Enoverra
  • equipcast
  • ezNG Solutions
  • Feelit Technologies
  • FluxWorks
  • Forge
  • Horne Technologies
  • Imperium Technologies
  • LiCAP Technologies
  • Make My Day
  • Moblyze
  • MyPass Global
  • NovaSpark Energy
  • Octet Scientific
  • Perceptive Sensor Technologies
  • PetroBricks
  • Piersica
  • Poseidon Minerals
  • Predyct
  • RIvotto
  • Roboze
  • Talisea
  • ThermoLift Solutions
  • Trout Software
  • Tuebor Energy
  • Undesert Corporation
  • Viridos
  • Vroom Solar
  • Well Information Technologies
  • WellWorth
  • Zsense Systems
Nuclear could be a powerful tool to address rising greenhouse-gas emissions. But to get there, the industry needs to raise its game. Photo via Pexels

Houston expert explains what’s needed to bend the curve on nuclear power

guest column

I argued previously that nuclear power can help the world deal with two related challenges: energy security and climate change. I still think that is the case.

McKinsey & Company, where I worked for more than 30 years, also recently turned to the topic. The authors agreed that nuclear can play a significant role in decarbonization, and noted that there were some encouraging trends, even in markets, such as the United States, where new plants are thin on the ground. And then the authors asked a critical question: “Can the industry reverse the trend of exceeding budgets and timelines while scaling up fast enough to rise to the climate challenge?”

That query got me thinking. To me, the case for nuclear is clear and compelling. Given that electricity demand could triple by 2050, the need for low-emission and constant power is acute. Nuclear fits that bill. Other sources either emit much more (coal, gas, oil) or are intermittent (wind, solar). Little new hydro is being built. Nothing else is at anything like scale.

But clearly, nuclear has not carried the day, particularly in Europe, Japan, and the United States. These markets are, at best, wary of nuclear power. They are willing to invest some money in next-generation technologies or maybe to extend an operating license. But they are not doing much about the conditions that make new construction so costly and difficult.

For that to happen, I think we need to go deeper—to change mindsets among two very different sets of players.

Anti-nuclear green activists. As the Rolling Stones wisely noted, “You can’t always get what you want.” To deal with something as complicated and wide-ranging as climate change, there will be trade-offs. But if you want reliable power and lower emissions and if you don’t want thousands of square miles of land coated with wind and solar farms, something has to give.

Consider France. It gets more than two-thirds of its power from nuclear, which is a huge part of the reason it ranks 60th in the world in per capita carbon-dioxide emissions (4.46 tons), a much better performance than global peers like Japan (8.5), Belgium (8.1), Germany (7.9), and Austria (7.3). Those four countries have all dialed back on nuclear. Here is the Austrian energy minister, Leonore Gewessler: “The attempt to declare nuclear energy as sustainable and renewable must be resolutely opposed.”

If the goal is to reduce emissions, though, why should that be the case? Well, one response is that championing nuclear power could reduce investment in renewables. But again, if the goal is to reduce emissions, then why not embrace technologies that do exactly that? Whether nuclear can be considered “renewable” seems to me to be almost a theological question, not a technical one. And certainly not a useful one. The goal should not be X or Y percent of renewables, but how to promote an energy transition that delivers reliable, low-emission power. Somehow that point is lost, or dismissed. Instead, major environmental groups such as the Sierra Club (“unequivocally opposed”), Greenpeace (“say no to new nukes”), the Climate Action Network Europe, the European Environmental Bureau (“We advocate for an exit from nuclear energy”) and so on don’t see a place for nuclear.

The mindset shift needed among these and other green groups is to see nuclear as one component of a diversified energy system that can be part of the climate solution, and then to turn their considerable power and creativity toward convincing the public. I just don’t see how shutting down nuclear plants before their time, and replacing them with higher-emissions sources, as is often the case, helps to reduce emissions.

I am not holding my breath on this, but stranger things have happened. Heck, nuclear has found an unlikely advocate in film-maker Oliver Stone. His new documentary, “Nuclear,” argues that the public “has been trained, from the very beginning, to fear nuclear power. The very thing that we fear is what may save us.”

Nuclear could be a powerful tool to address rising greenhouse-gas emissions. But to get there, the industry needs to raise its game. Stone’s nuclear-could-save-us scenario would be likelier if the industry made a better case for itself. Not in safety or reliability, where its record is remarkably good, but in frustration and economics. The stereotype of huge delays and budget over-runs is no myth. Georgia is the only US state building plants, and they are both running years and billions beyond the initial projections.

Granted, some things are beyond the industry’s control: legal challenges plus complex and shifting regulation add up. Some countries clearly do better than others on this. South Korea, for example, gets a third of its power from nuclear, is building three more plants, and is expanding its export market. It will be interesting to see if it could develop something like a nuclear assembly line that drives down its costs, which are already much lower than in the United States.

Like any other sector, nuclear needs to excel at competitiveness, cost control, and innovation—and it hasn’t. In the United States, the typical template has been to build really big plants, each unique, and each very expensive because of the size. The McKinsey report noted a number of things that the industry itself could do better, such as learning and applying best practices for large-scale projects; establishing standard designs; and using modular construction techniques. US construction productivity has stagnated for decades; the use of digitization and automation could help.

There are reasons to believe that the industry is improving. A cluster of companies is developing smaller, salt-cooled reactors; these are cheaper and safer. In January 2023, the Nuclear Regulatory Commission certified NuScale’s small modular reactor that uses natural water circulation, obviating the need for pumps and thus lowering capital costs. Compared to the 1,000 MW Georgia plants, NuScale’s are about 77MW, but can be added onto. No such plants have been built yet in the United States, though; advanced fission and fusion are even further away. So at the moment, this is all about potential. As one Department of Energy official put it, “It becomes truly real when electrons go on the grid.”

McKinsey concluded: “We believe a nuclear scale-up is achievable. It’s time for the industry to meet the challenge.” I agree,

Nuclear could be a powerful tool to address rising greenhouse-gas emissions. But to get there, the industry needs to raise its game. And it could use a little help from its enemies.

------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

ExxonMobil revs up EV pilot in Permian Basin

seeing green

ExxonMobil has upgraded its Permian Basin fleet of trucks with sustainability in mind.

The Houston-headquartered company announced a new pilot program last week, rolling out 10 new all-electric pickup trucks at its Cowboy Central Delivery Point in southeast New Mexico. It's the first time the company has used EVs in any of its upstream sites, including the Permian Basin.

“We expect these EV trucks will require less maintenance, which will help reduce cost, while also contributing to our plan to achieve net zero Scope 1 and 2 emissions in our Permian operations by 2030," Kartik Garg, ExxonMobil's New Mexico production manager, says in a news release.

ExxonMobil has already deployed EV trucks at its facilities in Baytown, Beaumont, and Baton Rouge, but the Permian Basin, which accounts for about half of ExxonMobil's total U.S. oil production, is a larger site. The company reports that "a typical vehicle there can log 30,000 miles a year."

The EV rollout comes after the company announced last year that it plans to be a major supplier of lithium for EV battery technology.

At the end of last year, ExxonMobil increased its financial commitment to implementing more sustainable solutions. The company reported that it is pursuing more than $20 billion of lower-emissions opportunities through 2027.

Cowboys and the EVs of the Permian Basin | ExxonMobilyoutu.be

Energy industry veteran named CEO of Houston hydrogen co.

GOOD AS GOLD

Cleantech startup Gold H2, a spinout of Houston-based energy biotech company Cemvita, has named oil and gas industry veteran Prabhdeep Singh Sekhon as its CEO.

Sekhon previously held roles at companies such as NextEra Energy Resources and Hess. Most recently, he was a leader on NextEra’s strategy and business development team.

Gold H2 uses microbes to convert oil and gas in old, uneconomical wells into clean hydrogen. The approach to generating clean hydrogen is part of a multibillion-dollar market.

Gold H2 spun out of Cemvita last year with Moji Karimi, co-founder of Cemvita, leading the transition. Gold H2 spun out after successfully piloting its microbial hydrogen technology, producing hydrogen below 80 cents per kilogram.

The Gold H2 venture had been a business unit within Cemvita.

“I was drawn to Gold H2 because of its innovative mission to support the U.S. economy in this historical energy transition,” Sekhon says in a news release. “Over the last few years, my team [at NextEra] was heavily focused on the commercialization of clean hydrogen. When I came across Gold H2, it was clear that it was superior to each of its counterparts in both cost and [carbon intensity].”

Gold H2 explains that oil and gas companies have wrestled for decades with what to do with exhausted oil fields. With Gold H2’s first-of-its-kind biotechnology, these companies can find productive uses for oil wells by producing clean hydrogen at a low cost, the startup says.

“There is so much opportunity ahead of Gold H2 as the first company to use microbes in the subsurface to create a clean energy source,” Sekhon says. “Driving this dynamic industry change to empower clean hydrogen fuel production will be extremely rewarding.”

–––

This article originally ran on InnovationMap.

Q&A: CEO of bp-acquired RNG producer on energy sustainability, stability

the view from heti

bp’s Archaea Energy is the largest renewable natural gas (RNG) producer in the U.S., with an industry leading RNG platform and expertise in developing, constructing and operating RNG facilities to capture waste emissions and convert them into low carbon fuel.

Archaea partners with landfill owners, farmers and other facilities to help them transform their feedstock sources into RNG and convert these facilities into renewable energy centers.

Starlee Sykes, Archaea Energy’s CEO, shared more about bp’s acquisition of the company and their vision for the future.

HETI: bp completed its acquisition of Archaea in December 2022. What is the significance of this acquisition for bp, and how does it bolster Archaea’s mission to create sustainability and stability for future generations?  

Starlee Sykes: The acquisition was an important move to accelerate and grow our plans for bp’s bioenergy transition growth engine, one of five strategic transition growth engines. Archaea will not only play a pivotal role in bp’s transition and ambition to reach net zero by 2050 or sooner but is a key part of bp’s plan to increase biogas supply volumes.

HETI: Tell us more about how renewable natural gas is used and why it’s an important component of the energy transition?  

SS: Renewable natural gas (RNG) is a type of biogas generated by decomposing organic material at landfill sites, anaerobic digesters and other waste facilities – and demand for it is growing. Our facilities convert waste emissions into renewable natural gas. RNG is a lower carbon fuel, which according to the EPA can help reduce emissions, improve local air quality, and provide fuel for homes, businesses and transportation. Our process creates a productive use for methane which would otherwise be burned or vented to the atmosphere. And in doing so, we displace traditional fossil fuels from the energy system.

HETI: Archaea recently brought online a first-of-its-kind RNG plant in Medora, Indiana. Can you tell us more about the launch and why it’s such a significant milestone for the company?  

SS:Archaea’s Medora plant came online in October 2023 – it was the first Archaea RNG plant to come online since bp’s acquisition. At Medora, we deployed the Archaea Modular Design (AMD) which streamlines and accelerates the time it takes to build our plants. Traditionally, RNG plants have been custom-built, but AMD allows plants to be built on skids with interchangeable components for faster builds.

HETI: Now that the Medora plant is online, what does the future hold? What are some of Archaea’s priorities over the next 12 months and beyond?  

SS: We plan to bring online around 15 RNG plants in each of 2024 and 2025. Archaea has a development pipeline of more than 80 projects that underpin the potential for around five-fold growth in RNG production by 2030.

We will continue to operate around 50 sites across the US – including RNG plants, digesters and landfill gas-to-electric facilities.

And we are looking to the future. For example, at our Assai plant in Pennsylvania, the largest RNG plant in the US, we are in the planning stages to drill a carbon capture sequestration (CCS) appraisal well to determine if carbon dioxide sequestration could be feasible at this site, really demonstrating our commitment to decarbonization and the optionality in value we have across our portfolio.

HETI: bp has had an office in Washington, DC for many years. Can you tell us more about the role that legislation has to play in the energy transition? 

SS: Policy can play a critical role in advancing the energy transition, providing the necessary support to accelerate reductions in greenhouse gas emissions. We actively advocate for such policies through direct lobbying, formal comments and testimony, communications activities and advertising. We also advocate with regulators to help inform their rulemakings, as with the US Environmental Protection Agency to support the finalization of a well-designed electric Renewable Identification Number (eRIN) program.

HETI: Science and innovation are key drivers of the energy transition. In your view, what are some of most exciting innovations supporting the goal to reach net-zero emissions?  

SS: We don’t just talk about innovation in bp, we do it – and have been for many years. This track record gives us confidence in continuing to transform, change and innovate at pace and scale. The Archaea Modular Design is a great example of the type of innovation that bp supports which enables us to pursue our goal of net-zero emissions.

Beyond Archaea, we have engineers and scientists across bp who are working on innovative solutions with the goal of lowering emissions. We believe that we need to invest in lower carbon energy to meet the world’s climate objectives, but we also need to invest in today’s energy system, which is primarily hydrocarbon focused. It’s an ‘and’ not ‘or’ approach, and we need both to be successful.

Learn more about Archaea and the work they are doing in energy transition.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.