The offshore site is adjacent to a CO2 pipeline network that ExxonMobil acquired in 2023 with its $4.9 billion purchase of Plano-based Denbury Resources. Photo via ExxonMobil.com

Spring-based ExxonMobil continues to ramp up its carbon capture and storage business with a new offshore lease and a new CCS customer.

On October 10, ExxonMobil announced it had signed the biggest offshore carbon dioxide storage lease in the U.S. ExxonMobil says the more than 271,000-acre site, being leased from the Texas General Land Office, complements the onshore CO2 storage portfolio that it’s assembling.

“This is yet another sign of our commitment to CCS and the strides we’ve been able to make,” Dan Ammann, president of ExxonMobil Low Carbon Solutions, says in a news release.

The offshore site is adjacent to a CO2 pipeline network that ExxonMobil acquired in 2023 with its $4.9 billion purchase of Plano-based Denbury Resources.

Ammann told Forbes that when it comes to available acreage in the Gulf Coast, this site is “the largest and most attractive from a geological point of view.”

The initial customer for the newly purchased site will be Northbrook, Illinois-based CF Industries, Forbes reported.

This summer, ExxonMobil sealed a deal to remove up to 500,000 metric tons of CO2 each year from CF’s nitrogen plant in Yazoo City, Mississippi. CF has earmarked about $100 million to build a CO2 dehydration and compression unit at the plant.

A couple of days before the lease announcement, Ammann said in a LinkedIn post that ExxonMobil had agreed to transport and annually store up to 1.2 metric tons of CO2 from the $1.6 billion New Generation Gas Gathering (NG3) pipeline project in Louisiana. Houston-based Momentum Midstream is developing NG3, which will collect and treat natural gas produced in Texas and Louisiana and deliver it to Gulf Coast markets.

This is ExxonMobil’s first CCS deal with a natural gas processor and fifth CCS deal agreement overall. To date, ExxonMobil has contracts in place for storage of up to 6.7 metric tons of CO2 per year.

“I’m proud that even more industries are choosing our #CCS solutions to meet their emissions reduction goals,” Ammann wrote on LinkedIn.

ExxonMobil says it operates the largest CO2 pipeline network in the U.S.

“The most fundamental thing we’re focused on is making sure the CO2 is stored safely and securely,” Ammann told Forbes in addressing fears that captured CO2 could seep back into the atmosphere.

Experts from the University of Houston are teaming up with the city on key sustainability efforts.

University of Houston collaborates with county on future-facing sustainability efforts

dream team

Researchers at the University of Houston are partnering with the Harris County Office of County Administration’s Sustainability Office, the Harris County Energy Management Team, and other county staff in an effort to develop a comprehensive baseline of energy use and energy-use intensity that will aim to reduce energy costs and emissions in county facilities.

Once fully established, the team will work on tracking progress and evaluating the effectiveness of energy-saving measures over time. They will begin to build the foundation for future programs aimed at maximizing savings, reducing energy consumption, and increasing the use of renewable energy sources in county operations.

Harris County energy managers, Glen Rhoden and Yas Ahmadi, will work with UH professionals, including:

  • Jian Shi, UH Cullen College of Engineering associate professor of engineering technology and electrical and computer engineering
  • Zhu Han, Moores professor of electrical and computer engineering
  • Xidan "Delia" Zhang, UH research intern

The group began collaborating a year ago, and analyzed energy consumption data from county facilities.They were able to successfully identify key summertime energy-saving opportunities and completed retro-commissioning of four county buildings. Those efforts saved over $230,000 annually in electricity costs.

“This project is a prime example of how impactful research at UH can be when applied to real-world challenges, delivering tangible benefits to both the environment and the communities we serve,” Shi says in a news release.

The team will plan to do additional building projects, which includes the development of solar energy and heat pump initiatives, building automation system upgrades, and LED lighting installations. The goal is to reduce electricity usage by at least 5 percent per year for county facilities by 2030 and cut greenhouse gas emissions by 50 percent over the next 5 years for county buildings.

“Addressing climate change and the energy transition requires a collaborative effort that is not only data-driven and action-oriented but also human-centric,” Shi adds. “It’s about more than just technology—it’s about improving the quality of life for Texans.”

The rule will apply to 218 facilities spread across Texas and Louisiana, the Ohio River Valley, West Virginia and the upper South. Photo via Getty Images

New EPA rule says 200 US chemical plants in Texas, beyond must reduce cancer-causing toxic emissions

mission: lower emissions

More than 200 chemical plants nationwide will be required to reduce toxic emissions that are likely to cause cancer under a new rule issued Tuesday by the Environmental Protection Agency. The rule advances President Joe Biden’s commitment to environmental justice by delivering critical health protections for communities burdened by industrial pollution from ethylene oxide, chloroprene and other dangerous chemicals, officials said.

Areas that will benefit from the new rule include majority-Black neighborhoods outside New Orleans that EPA Administrator Michael Regan visited as part of his 2021 Journey to Justice tour. The rule will significantly reduce emissions of chloroprene and other harmful pollutants at the Denka Performance Elastomer facility in LaPlace, Louisiana, the largest source of chloroprene emissions in the country, Regan said.

“Every community in this country deserves to breathe clean air. That’s why I took the Journey to Justice tour to communities like St. John the Baptist Parish, where residents have borne the brunt of toxic air for far too long,” Regan said. “We promised to listen to folks that are suffering from pollution and act to protect them. Today we deliver on that promise with strong final standards to slash pollution, reduce cancer risk and ensure cleaner air for nearby communities.”

When combined with a rule issued last month cracking down on ethylene oxide emissions from commercial sterilizers used to clean medical equipment, the new rule will reduce ethylene oxide and chloroprene emissions by nearly 80%, officials said.

The rule will apply to 218 facilities spread across Texas and Louisiana, the Ohio River Valley, West Virginia and the upper South, the EPA said. The action updates several regulations on chemical plant emissions that have not been tightened in nearly two decades.

Democratic Rep. Troy Carter, whose Louisiana district includes the Denka plant, called the new rule “a monumental step" to safeguard public health and the environment.

“Communities deserve to be safe. I've said this all along,'' Carter told reporters at a briefing Monday. "It must begin with proper regulation. It must begin with listening to the people who are impacted in the neighborhoods, who undoubtedly have suffered the cost of being in close proximity of chemical plants — but not just chemical plants, chemical plants that don’t follow the rules.''

Carter said it was "critically important that measures like this are demonstrated to keep the confidence of the American people.''

The new rule will slash more than 6,200 tons (5,624 metric tonnes) of toxic air pollutants annually and implement fenceline monitoring, the EPA said, addressing health risks in surrounding communities and promoting environmental justice in Louisiana and other states.

The Justice Department sued Denka last year, saying it had been releasing unsafe concentrations of chloroprene near homes and schools. Federal regulators had determined in 2016 that chloroprene emissions from the Denka plant were contributing to the highest cancer risk of any place in the United States.

Denka, a Japanese company that bought the former DuPont rubber-making plant in 2015, said it “vehemently opposes” the EPA’s latest action.

“EPA’s rulemaking is yet another attempt to drive a policy agenda that is unsupported by the law or the science,” Denka said in a statement, adding that the agency has alleged its facility “represents a danger to its community, despite the facility’s compliance with its federal and state air permitting requirements.”

The Denka plant, which makes synthetic rubber, has been at the center of protests over pollution in majority-Black communities and EPA efforts to curb chloroprene emissions, particularly in the Mississippi River Chemical Corridor, an 85-mile (137-kilometer) industrial region known informally as Cancer Alley. Denka said it already has invested more than $35 million to reduce chloroprene emissions.

The EPA, under pressure from local activists, agreed to open a civil rights investigation of the plant to determine if state officials were putting Black residents at increased cancer risk. But in June the EPA dropped its investigation without releasing any official findings and without any commitments from the state to change its practices.

Regan said the rule issued Tuesday was separate from the civil rights investigation. He called the rule “very ambitious,'' adding that officials took care to ensure “that we protect all of these communities, not just those in Cancer Alley, but communities in Texas and Puerto Rico and other areas that are threatened by these hazardous air toxic pollutants.''

While it focuses on toxic emissions, “by its very nature, this rule is providing protection to environmental justice communities — Black and brown communities, low-income communities — that have suffered for far too long,'' Regan said.

Patrice Simms, vice president of the environmental law firm Earthjustice, called the rule “a victory in our pursuit for environmental justice.”

“There’s always more to do to demand that our laws live up to their full potential,” Simms said, "but EPA's action today brings us a meaningful step closer to realizing the promise of clean air, the promise of safe and livable communities and ... more just and more equitable environmental protections.''

bp is now using Baker Hughes emissions abatement technology, flare.IQ, to quantify methane emissions from its flares. Photo via Canva

Baker Hughes, bp team up on flare emissions monitoring tech

partnerships

Two energy companies with Houston headquarters are collaborating on flare emissions monitoring.

According to a news release, bp is now using Baker Hughes emissions abatement technology, flare.IQ, to quantify "methane emissions from its flares, a new application for the upstream oil and gas sector." The statement goes on to explain that the industry doesn't have a to methane emission quantifying, and that bp ad Baker Hughes has facilitated a large, full-scale series of studies on the technology.

Now, bp is utilizing 65 flares across seven regions to reduce emissions.

“bp’s transformation is underway, turning strategy into action through delivery of our targets and aims. We don’t have all the answers, and we certainly can’t do this on our own," Fawaz Bitar, bp senior vice president of Health Safety Environment & Carbon, says in the release. "Through our long-standing partnership with Baker Hughes, we have progressed technology and implemented methane quantification for oil and gas flares, helping us to achieve the first milestone of our Aim 4. We continue to look at opportunities like this, where we can collaborate across the industry to find solutions to our biggest challenges."

The flare.IQ technology is a part of Baker Hughes’ Panametrics product line portfolio, and it builds on 40 years of ultrasonic flare metering technology experience. The advanced analytics platform provides operators with real-time, decision-making data.

“Our collaboration with bp is an important landmark and a further illustration that technology is a key enabler for addressing the energy trilemma of security, sustainability and affordability,” Ganesh Ramaswamy, executive vice president of Industrial & Energy Technology at Baker Hughes, says in the release. “As a leader in developing climate technology solutions, such as our flare.IQ emissions monitoring and abatement technology, cooperations like the one we have with bp are key to testing and validating in the field solutions that can enable operators to achieve emissions reduction goals efficiently and economically.”

Houston climate tech founder weighs in on his observations on what's true, what's exaggerated, and what all humans can agree on about the climate crisis. Photo via Getty Imagees

Houston expert: Why climate action needs better PR and how to love the climate apocalypse

guest column

The last thing anyone wants in 2024 is a reminder of the impending climate apocalypse, but here it is: There is a scientific consensus that the world climate is trending towards uninhabitable for many species, including humans, due in large part to results of human activity.

Psychologists today observe a growing trend of patients with eco-anxiety or climate doom, reflecting some people’s inability to cope with their climate fears. The Edelman Trust Barometer, in its most recent survey respondents in 14 countries, reports that 93 percent “believe that climate change poses a serious and imminent threat to the planet.”

Until recently reviewing this report, I was unaware that 93 percent of any of us could agree on anything. It got me thinking, how much of our problem today is based on misunderstanding both the nature of the problem and the solution?

We’ve been worried for good reason before 

It’s worth keeping in mind that climate change is not the first time smart people thought humans were doomed by our own successes or failures. Robert Malthus theorized at the end of the 18th century that projected human fertility would certainly outpace agricultural production. Just a century and a half later, about half of all Americans expected a nuclear war, and the number jumped to as high as 80 percent expecting the next war to be nuclear. Yes, global hunger and nuclear threats still exist, but our results have outperformed the worst of those dire projections.

We are worried for good reason today 

Today changing climate conditions have grabbed the headlines. The world’s climate is changing at a rate faster than we can model effectively, though our best modeling suggests significant, coordinated, global efforts are necessary to reverse current trends. While there’s still lots to learn, the consensus is that we are approaching a global temperature barrier across which we may not be able to quickly return. These conclusions are worrisome.

How did we get here?

Our reliance on hydrocarbons is at the heart of our climate challenge. If combusting them is so damaging, why do we keep doing it? We know enough about our human cognitive biases to say that humans tend to “live in the moment” when it comes to decision making. Nobel Prize-winning economic research suggests we choose behaviors that reward us today rather than those with longer term payoffs. Also, changing behaviors around hydrocarbons is hard. Crude oil, natural gas and coal have played a central role in the reduction of human suffering over time, helping to lift entire populations out of poverty, providing the power for our modern lives and even supplying instrumental materials for clothes and packaging. It’s hard to stop relying on a resource so plentiful, versatile and reliable.

How do we get out of here?

Technological advances in the future may help us address climate in new and unexpected ways. If we do nothing and hope for the best, what’s the alternative? We can take confidence that we’ve addressed difficult problems before. We can also take confidence that advancements like nuclear, solar, geothermal and wind power are already supplementing our primary reliance on hydrocarbons.

The path forward will be extending the utility of these existing alternatives and identifying new technologies. We need to reduce emissions and to withdraw greenhouse gasses (GHGs) that have already been emitted. The nascent energy transition will continue to be funded by venture capitalists, government spending/incentives and private philanthropy. Larger funding sources will come from private equity and public markets, as successful technologies compete for more traditional sources of capital.

Climate Tech will be a large piece of the climate puzzle

My biases are likely clear: the same global capitalism that brought about our complicated modern world, with its apparent abundance and related climate consequences, has the best chance to save us. Early stage climate tech funding is increasing, even if it’s still too small. It has been observed that climate tech startups receiving funding today fail to track solutions for industries in proportion to their related production of GHGs. For instance, the agriculture and food sector creates about 18 percent of global GHGs, while climate tech companies seeking to address that sector receive about 9 percent of climate tech funding. These misalignments aside, the trendlines are in the right direction.

What can you do?

From a psychological perspective, healthy coping means making small decisions that address your fears, even if you can’t eliminate the root causes. Where does that leave you?

Be a voice for reasonable change. Make changes in your behavior where and when you can. Also, take comfort when you see existing industries adopting meaningful sustainable practices at faster rates. Support the companies you believe are part of the solution.

We are already seeing a burgeoning climate tech industry across the globe and here at home. With concerted efforts like the Ion and Greentown Labs, the Houston climate tech sector is helping to lead the charge. In what was even recently an unthinkable reality, the United States has taken a leadership role. Tellingly, we are not leading necessarily by setting targets, but instead by funding young startups and new infrastructure like the hydrogen hubs. We don’t know when or where the next Thomas Edison will emerge to shine a new light in a dark world. However, I do suspect that that woman or man is alive today, and it’s our job to keep building a world worth that person saving.

---

Chris Wood is the co-founder of Houston-based Moonshot Compost.

"To solve the climate crisis, confidence in emissions data is crucial." Photo via Getty Images

Expert: Using data to reduce Houston’s oil and gas carbon footprint

guest column

Sustainability has been top of mind for all industries as we witness movements towards reducing carbon emissions. For instance, last year, the Securities and Exchange Commission (SEC) proposed a new rule that requires companies to disclose certain climate-related activities in their reporting on a federal level. Now, industries and cities are scrambling to ensure they have strategies in the right place.

While the data behind sustainability poses challenges across industries, it is particularly evident in oil and gas, as their role in energy transition is of the utmost importance, especially in Texas. We saw this at the COP26 summit in Glasgow in November 2021, for example, in the effort to reduce carbon emissions on both a national and international scale and keep global warming within 1.5 degrees Celsius.

The event also made it clear achieving this temperature change to meet carbon neutrality by 2030 won’t be possible if organizations rely on current methods and siloed data. In short, there is a data problem associated with recent climate goals. So, what does that mean for Houston’s oil and gas industry?

Climate is a critical conversation – and tech can help

Houston has long been considered the oil and gas capital of the world, and it is now the epicenter of energy transition. You can see this commitment by the industry in the nature of the conferences as well as the investment in innovation centers.

In terms of the companies themselves, over the past few years each of the major oil and gas players have organized and grown their low carbon business units. These units are focused on bringing new ideas to the energy ecosystem. The best part is they are not working alone but joining forces to find solutions. One of the highest profile examples is ExxonMobil’s Carbon Capture and Underground Storage project (CCUS) which directly supports the Paris Agreement.

Blockchain technology is needed to improve transparency and traceability in the energy sector and backing blockchain into day-to-day business is key to identifying patterns and making decisions from the data.

The recent Blockchain for Oil and Gas conference, for instance, focused on how blockchain can help curate emissions across the ecosystem. Recent years have also seen several additional symposiums and meetings – such as the Ion and

Greentown Houston – that focus on helping companies understand their carbon footprint.

How do we prove the data?

The importance of harmonizing data will become even more important as the SEC looks to bring structure to sustainability reporting. As a decentralized, immutable ledger where data can be inputted and shared at every point of action, blockchain works by storing information in interconnected blocks and providing a value-add for insuring carbon offsets. To access the data inside a block, users first need to communicate with it. This creates a chain of information that cannot be hacked and can be transmitted between all relevant parties throughout the supply chain. Key players can enter, view, and analyze the same data points securely and with assurance of the data’s accuracy.

Data needs to move with products throughout the supply chain to create an overall number for carbon emissions. Blockchain’s decentralization offers value to organizations and their respective industries so that higher quantities of reliable data can be shared between all parties to shine a light on the areas they need to work on, such as manufacturing operations and the offsets of buildings. Baking blockchain into day-to-day business practice is key in identifying patterns over time and making data-backed decisions.

Oil and gas are key players

Cutting emissions is not a new practice of the oil and gas industry. In fact, they’ve been cutting emissions estimates by as much as 50 percent to avoid over-reporting.

The traditional process of reporting data has also been time-consuming and prone to human error. Manually gathering data across multiple sources of information delivers no real way to trace this information across supply chains and back to the source. And human errors, even if they are accidental, pose a risk to hefty fines from regulatory agencies.

It’s a now-or-never situation. The industry will need to pivot their approaches to data gathering, sharing, and reporting to commit to emissions reduction. This need will surely accelerate the use of technologies, like blockchain, to be a part of the energy transition. While the climate challenges we face are alarming, they provide the basis we need for technological innovation and the ability to accurately report emissions to stay in compliance.

The Energy Capital of the World, for good

To solve the climate crisis, confidence in emissions data is crucial. Blockchain provides that as well as transparency and reliability, all while maintaining the highest levels of security. The technology provides assurance that the data from other smart technologies, like connected sensors and the Internet of Things (IoT), is trustworthy and accurate.

The need for good data, new technology, and corporate commitment are all key to Houston keeping its title as the energy capital of the world – based on traditional fossil fuels as well as transitioning to clean energy.

------

John Chappell is the director of energy business development at BlockApps. This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Virtual power plant from Houston-area company debuts at CES

Powering Up

Brookshire, Texas-based decentralized energy solution company AISPEX Inc. debuted its virtual power plant (VPP) platform, known as EnerVision, earlier this month at CES in Las Vegas.

EnerVision offers energy efficiency, savings and performance for residential, commercial and industrial users by combining state-of-the-art hardware with an AI-powered cloud platform. The VPP technology enables users to sell excess energy back to the grid during demand peaks.

AISPEX, or Advanced Integrated Systems for Power Exchange, has evolved from an EV charging solutions company into an energy systems innovator since it was founded in 2018. It focuses on integrating solar energy and decentralized systems to overcome grid limitations, reduce upgrade costs and accelerate electrification.

Regarding grid issues, the company hopes by leveraging decentralized solar power and Battery Energy Storage Systems (BESS), EnerVision can help bring energy generation closer to consumption, which can ease grid strain and enhance stability. EnerVision plans to do this by addressing “aging infrastructure, grid congestion, increasing electrification and the need for resilience against extreme weather and cyber threats,” according to the company.

One of the company's latest VPP products is SuperHub, which is an all-in-one charging station designed to combine components like solar panels, energy storage systems, fast EV chargers, mobile EV chargers and LCD display screens, into a unified, efficient solution.

“It supports clean energy generation and storage but also ensures seamless charging for electric vehicles while providing opportunities for communication or advertising through its built-in displays,” says Vivian Nie, a representative from AISPEX.

Also at CES, AISPEX displayed its REP Services, which offer flexible pricing, peak load management, and renewable energy options for end-to-end solutions, and its Integrated Systems, which combine solar power, battery storage, EV charging and LCD displays.

“We had the opportunity to meet new partners, reconnect with so many old friends, and dive into discussions about the future of e-mobility and energy solutions,” CEO Paul Nie said on LinkedIn.

In 2024, AISPEX installed its DC Fast chargers at two California Volkswagen locations.

Houston-based energy transition leader talks new role, shares future predictions

new hire

For some companies, all that’s needed to make a seismic shift toward innovation is to hire the right person to steer the organization in a transcendent direction.

Arcadis, a sustainable design, engineering, and consultancy solutions company, is channeling this concept by hiring Masjood Jafri as its new National Energy Transition Strategic Advisor and Business Development Lead. In the role, Jafri will help lead and develop the company’s energy transition business growth and strategy for its interests in the United States alongside Matthew Yonkin, National Energy Transition Solution Leader, based in New York.

“I have a fairly diverse background, with about a decade in the energy industry with an oil and gas, power and petrochemicals background,” says Jafri, who moved to Houston from the U.K. back in 2012. “But prior to that, I had about a decade in the infrastructure world, looking into the transportation market, and the manufacturing sector, as well as working as a lender's advisor in the capital market. So, in this very transformative period, you need to connect all the dots.”

With just over six months in his new role, Jafri leverages his 20 years of experience in leading the successful delivery of capital programs and projects as the strategic advisor to Arcadis’ own capital projects.

“Arcadis is on a journey to be the sustainability partner or sustainable transformation partner for our clients,” Jafri says. “And the path to sustainability goes through energy transition. Arcadis has been investing quite heavily in that space for us to be a leading consulting services provider for energy companies.

Jafri’s hire comes as Arcadis moves its business operations in Houston to a new centralized office in the Galleria area. According to Jafri, this will bring the company’s expertise under one roof. With Houston being the energy capital of the world, Jafri says Arcadis is positioned to lead and deliver results for the energy demand in the United States and globally.

“Houston is the Silicon Valley of energy,” Jafri says. “The challenge is to continue to drive with that force. … We have the talent in the city, we have the right mindset—very entrepreneurial, and obviously a lot of capital commitment to make these changes.

“And it is not just coming from the private sector, it is also coming from the public sector. So, I think the stars are aligning in the context of what is needed for us to have a planet-positive future and Houston being suitably positioned to deliver to that,” he adds.

And while keeping up with the demand for energy and moving towards clean energy are equally important challenges, Jafri is more focused on addressing the latter.

“Clean energy is certainly a bigger challenge because it requires a very broad area of energy sources to come together and to make it cleaner,” Jafri says. “Technologically, some of those things are not ready yet, at least to be scalable in a commercial and profitable way. So that's the challenge. I think it is a clean energy challenge, but obviously, the demand side makes it a bit more complicated.”

Texans, and more specifically Houstonians, have seen firsthand the complications of demand and the pitfalls of energy security and resilience. Addressing these issues, along with many other sustainability challenges, will also be part of Jafri’s core mission at Arcadis.

“As we saw in severe climate conditions, the grid is vulnerable and so are the people connected to the grid,” Jafri says. “The better we can make the grid more resilient and more adaptive to these changes, the more satisfactory conditions will be on the ground for people who are affected.”

Jafri asserts that the industry is already considering numerous options, including all colors of hydrogen, solar, wind and geothermal, in addition to fossil-based energy (natural gas). These measures are already in progress, but consumers are concerned with climate change and, of course, the impact on their electricity bills. Still, states like California, Washington and Texas are making progress.

“I would say by the year 2030 you would start to see a pretty significant movement in the right direction,” Jafri says. “If you look from a federal policy perspective, we want to produce 100 percent of the electricity clean by 2035. That is an expected goal, but it’s all happening.”

Experts reveal top 6 predictions for oil and gas industry in 2025

guest column

If you tune in to the popular national narrative, 2025 will be the year the oil and gas industry receives a big, shiny gift in the form of the U.S. presidential election.

President Donald Trump’s vocal support for the industry throughout his campaign has casual observers betting on a blissful new era for oil and gas. Already there are plans to lift the pause on LNG export permits and remove tons of regulatory red tape; the nomination of Chris Wright, chief executive of Liberty Energy, to lead the Department of Energy; and the new administration’s reported wide-ranging energy plan to boost gas exports and drilling — the list goes on.

While the outlook is positive in many of these areas, the perception of a “drill, baby, drill” bonanza masks a much more complicated reality. Oil and gas operators are facing a growing number of challenges, including intense pressure to reduce costs and boost productivity, and uncertainty caused by geopolitical factors such as the ongoing conflicts in the Middle East and Russia-Ukraine.

From our vantage point working with many of the country’s biggest operators and suppliers, we’re seeing activity that will have major implications for the industry — including the many companies based in and operating around Texas — in the coming year. Let’s dig in.

1. The industry’s cost crunch will continue — and intensify.
In 2024, oil and gas company leaders reported that rising costs and pressure to cut costs were two of the top three challenges they faced, according to a national Workrise-Newton X study that surveyed decision makers from operators and suppliers of all sizes. Respondents reported being asked to find an astonishing 40% to 60% reduction in supply chain-related costs across categories, on average.

Given the seemingly endless stream of geopolitical uncertainty (an expanded war in the Middle East, continued conflict after Russia’s invasion of Ukraine, and China’s flailing economy, for starters), energy companies are between a rock and a hard place when it comes to achieving cost savings from suppliers.

With lower average oil prices expected in 2025, expect the cost crunch to continue. That’s because today’s operators have only two levers they can rely on to drive an increase in shareholder returns: reducing costs and increasing well productivity. Historically, the industry could rely on a third lever: an increase in oil demand, which, combined with limited ability to meet that demand with supply, led to steadily increasing oil prices over time. But that is no longer the case.

2. The consolidation trend in oil and gas will continue, but its shape will change.
In the wake of the great oil and gas M&A wave of 2024, the number of deals will decrease — but the number of dollars spent will not. Fewer, larger transactions will be the face of consolidation in the coming year. Expect newly merged entities to spin off non-core assets, which will create opportunities for private equity to return to the space.

This will be the year the oil and gas industry becomes investable again, with potential for multiple expansions across the entire value chain — both the E&P and the service side. From what we’re hearing in the industry, expect 2 times more startups in 2025 than there were this year.

With roughly the same amount of deals next year, but less volume and fewer total transactions, there will be more scale — more pressure from the top to push down service costs. This will lead to better service providers. But there will also be losers, and those are the service providers that cannot scale with their large clients.

3. Refilling SPR will become a national priority.
The outgoing administration pulled about 300 million barrels out of the country’s Strategic Petroleum Reserve (SPR) during the early stages of the Russia-Ukraine conflict. In the coming year, replenishing those stores will be crucial.

There will be a steady buyer — the U.S. government — and it will reload the SPR to 600-plus million barrels. The government will be opportunistic, targeting the lowest price while taking care not to create too much imbalance in the supply-demand curve. A priority of the new administration will be to ensure they don’t create demand shocks, driving up prices for consumers while absorbing temporary oversupply that may occur due to seasonality (i.e. reduced demand in spring and fall).

The nation’s SPR was created following the 1973 oil embargo so that the U.S. has a cushion when there’s a supply disruption. With the current conflict in the Middle East continuing to intensify, the lessons learned in 1973 will be top of mind.

If OPEC + moves from defending prices to defending market share, we can expect their temporary production cuts to come back on market over time, causing oversupply and a resulting dramatic drop in oil prices. The U.S. government could absorb the balance, defending U.S. exploration and production companies while defending our country's interest in energy security. Refilling the SPR could create a hedge, protecting the American worker from this oversupply scenario.

4. The environment and emissions will remain a priority, and the economic viability of carbon capture will take center stage.
Despite speculation to the contrary, there will be a continuation of conservation efforts and emissions reduction among the biggest operators. The industry is not going to say, “Things have changed in Washington, so we no longer care about the environment.”

But there will be a shift in focus from energy alternatives that have a high degree of difficulty and cost keeping pace with increasing energy demand (think solar and wind) to technologies that are adjacent to the oil and gas industry’s core competencies. This means the industry will go all in on carbon capture and storage (CCS) technologies, driven by both environmental concerns and operational benefits. This is already in motion with major players (EQT, Exxon, Chevron, Conoco and more) investing heavily in CCS capabilities.

As the world races to reach net-zero emissions by 2050, there will be a push for carbon capture to be economical and scalable — in part because of the need for CO2 for operations in the business. In the not-so-distant future, we believe some operators will be able to capture as much carbon as they're extracting from the earth.

5. The sharp rise in electricity demand to power AI data centers will rely heavily on natural gas.
Growth in technologies like generative AI and edge computing is expected to propel U.S. electricity demand to hit record highs in 2025 after staying flat for about two decades. This is a big national priority — President Trump has said we’ll need to more than double our electricity supply to lead the globe in artificial intelligence capabilities — and the urgent need for power will bring more investment in new natural gas infrastructure.

Natural gas is seen as a crucial “bridge fuel” in the energy transition. The U.S. became the world's top exporter of LNG in 2023 — and in the year ahead, brace for a huge push for pipeline infrastructure development in the range of 10-15 Bcf of new pipeline capacity in the next two to three years. (Translation: development on a massive scale, akin to railway construction during the Industrial Revolution.)

Big operators have already been working on deals to use natural gas and carbon capture to power the tech industry; given the significant increase in the electricity transmission capabilities needed to support fast-growing technologies, there will continue to be big opportunities behind the meter.

6. Regulatory processes will become more efficient, not less stringent.
This year will bring a focus on streamlining and aligning regulations, rather than on wholesale rollbacks. It’s not carte blanche for the industry to do whatever it wants, but rather a very aggressive challenge to the things that are holding operators back.

Historically, authorities have stacked regulation upon regulation and, as new problems arise, added even more regulations on top.There will be a very deliberate effort this year to challenge the regulations currently in place, to make sure they are aligned and not just stacked.

The new administration is signaling that it will be deliberate about regulation matching intent. They’ll examine whether or not particular policies are valuable to retain, or reconfigure, or realign with the industry to enable growth and also still protect the environment.

Easing the regulatory environment will enable growth in savings, lower project costs and speed to bring projects online. Another benefit of regulatory certainty: it will make large capital project financing more readily available. We’ve seen major gridlock in large project financing due to a lack of trust in the regulatory environment and potential for rules to change mid-project (see: Keystone XL). If they are certain the new administration will be supportive of projects that are viable and meet regulatory requirements, companies will once again be able to obtain the financing needed to accelerate development and commissioning of those projects.

But we shouldn’t mistake a new era of regulatory certainty for a regulatory free-for-all. Take LNG permits. They should be accelerated — but don’t expect a reduction in the actual level of environmental protection as a result. It currently takes 18 months to get a single permit to drill a well on federal land. It should take three weeks. Before 2020, it took about a month to obtain a federal permit.

2025 will be the year we begin to return to regulatory efficiency without sacrificing the protections the rules and policies set out to accomplish in the first place.

---

Adam Hirschfeld and Jacob Gritte are executives at Austin-basedWorkrise, the leading labor provider and source-to-pay solution for energy companies throughout Texas and beyond.