SLB and Nevada-based Ormat Technologies are aiming to scale enhanced geothermal systems. Photo courtesy SLB

Houston-based energy technology company SLB and renewable energy company Ormat Technologies have teamed up to fast-track the development and commercialization of advanced geothermal technology.

Their initiative focuses on enhanced geothermal systems (EGS). These systems represent “the next generation of geothermal technology, meant to unlock geothermal energy in regions beyond where conventional geothermal resources exist,” the companies said in a news release.

After co-developing EGS technology, the companies will test it at an existing Ormat facility. Following the pilot project, SLB and Nevada-based Ormat will pursue large-scale EGS commercialization for utilities, data center operators and other customers. Ormat owns, operates, designs, makes and sells geothermal and recovered energy generation (REG) power plants.

“There is an urgent need to meet the growing demand for energy driven by AI and other factors. This requires accelerating the path to clean and reliable energy,” Gavin Rennick, president of new energy at SLB, said in a news release.

Traditional geothermal systems rely on natural hot water or steam reservoirs underground, limiting the use of geothermal technology. EGS projects are designed to create thermal reservoirs in naturally hot rock through which water can circulate, transferring the energy back to the surface for power generation and enabling broader availability of geothermal energy.

The U.S. Department of Energy estimates next-generation geothermal, such as EGS, could provide 90 gigawatts of electricity by 2050.

Bill Gates says companies like Fervo push the geothermal technology 'to new depths.' Photo via fervoenergy.com

Fervo Energy spotlighted by Bill Gates as geothermal’s global growth driver

geothermal predictions

In a new blog post spotlighting Houston-based geothermal power startup Fervo Energy, billionaire Bill Gates — a Fervo investor — predicts geothermal will eventually supply up to 20 percent of the world’s electricity, up from his previous estimate of as much as 5 percent.

Today, geothermal accounts for less than 1 percent of electricity generated around the world, according to the International Energy Agency. The agency forecasts geothermal will represent up to 15 percent of global power by 2050.

“Geothermal power will have a big role to play in our clean energy future, and it’s exciting to see companies like Fervo push the technology to new depths,” Gates wrote.

Gates’ more than $1 billion Breakthrough Energy Ventures fund has contributed to the $982 million pool of money that Fervo has raised since its founding in 2017. Fervo is now a unicorn, meaning its valuation as a private company exceeds $1 billion. Its valuation has been estimated at $1.4 billion.

The Microsoft billionaire published the blog post on his Gates Notes website after touring the site of Fervo’s Cape Station geothermal project, which is under construction in Utah. Fervo says Cape Station will be the world’s largest geothermal plant, capable of someday producing up to 2 gigawatts of power.

Earlier this year, Fervo raised $206 million to put toward the development of Cape Station. Of that amount, $100 million came from Breakthrough Energy Catalyst, a green tech investment program backed by Gates, according to Inc.com.

The first phase of Cape Station is scheduled to be completed in 2026, with first-year power generation pegged at 100 megawatts. An additional 500 megawatts of power-producing capacity is slated to go online in 2028.

“Geothermal is one of the most promising ways to deliver clean energy that’s reliable and affordable,” Gates wrote.

In the blog post, Gates praised the simplicity of geothermal energy.

“The interior of the Earth is incredibly hot, and the deeper you go, the hotter the ground becomes,” he explained. “If you pump fluid deep enough to be warmed by this heat and then pump it back to the surface, you can turn the hot liquid into steam and use it to spin turbines and generate electricity — just like many other types of power plants.”

Gates noted that horizontal drilling is one of Fervo’s biggest innovations. The company extends its wells horizontally by as much as 5,000 feet at the deepest point. It couples horizontal drilling with hydraulic fracturing, or fracking, to extract geothermal energy from rock formations.

Most wells at Cape Station are 8,000 to 9,000 feet deep, and the deepest one is 15,000 feet below the surface, Gates pointed out.

Gates also emphasized the water-conserving, closed-system setup at Cape Station.

“Geothermal energy is one of the more climate-friendly sources of power, but one of its downsides is how much water it uses. … Fervo’s technology captures all the water that would’ve been lost and recirculates it underground to keep the system running,” he wrote.

XGS Energy plans to “aggressively expand” its team in Houston this year thanks to its latest round of investments. Photo via Getty Images

Houston geothermal company closes $13M in investments to fuel growth

fresh funding

XGS Energy, a California-headquartered geothermal power company with a major presence in Houston, has closed $13 million in new financing that included new investors Aligned Climate Capital, ClearSky, ClimateIC and WovenEarth Ventures, in addition to inside investors.

The company plans to “aggressively expand” its team in Houston this year, according to a news release.

“We are facing global energy supply challenges of unprecedented scale and urgency,” Kevin Kimsa, Managing Partner at ClimateIC, said in the release. “The XGS team is uniquely primed to meet the moment, bringing together innovative technology and leading engineering talent with the deep experience in infrastructure development and financing critical to deploying large-scale energy systems at speed.”

As part of the financing deal, Mano Nazar, ClearSky Senior Advisor and the former Chief Nuclear Officer of NextEra Energy, will join the XGS Energy Board of Directors.

“XGS’s advanced geothermal technology is uniquely positioned to deliver abundant energy to the grid faster than any other baseload energy technology at a time of unprecedented demand for energy resources,” Nazar said in a news release. “We are excited to partner with XGS to deliver on their mission of sustainable, reliable, and scalable geothermal energy.”

XGS is known for its next-gen closed-loop geothermal well architecture. The company saw massive growth in the Houston market last year and recently completed a 100-meter field demonstration in central Texas. The new funding supports the XGS’s multi-gigawatt project pipeline.

The recent financing also builds on an oversubscribed Series A round led by Constellation Technology Ventures, VoLo Earth Ventures, and Valo Ventures that closed last year.

Axel-Pierre Bois, XGS Energy's Chief Technology Officer. Photo courtesy XGS Energy

Geothermal exec on Houston expansion, commercialization and more

Q&A

Challenges in the energy transition often center around two questions: Where will organizations find the resources? And how will projects be financed?

XGS Energy's next-gen closed-loop geothermal well architecture addresses both issues head-on. The California-based company saw massive growth in the Houston market last year and recently completed a 100-meter field demonstration in central Texas, marking a major milestone for its technology's commercialization and potential for scale.

In an interview with EnergyCapital, Axel-Pierre Bois, XGS's Chief Technology Officer, shares what drew him to the geothermal space, why XGS is expanding in Houston and what the company's plans are for the year ahead.

How does XGS Energy's technology address the biggest challenges in geothermal energy?

XGS Energy is developing a geothermal system that decouples geothermal energy from its traditional dependence on water and geology to deliver affordable, clean energy anywhere there is hot rock.

Historically, geothermal resources have been hard to locate, as conventional systems require the overlap of hot rock, porous and permeable geology, and abundant water to produce energy, limiting their potential to a few select hot spots worldwide. Instead of relying on an underground fracture network that drives the geology and water requirements, the base component of XGS’s system is a single well, in which fluid is pumped to a hot rock resource and then returned to the surface through a tube-in-shell design, creating a sealed, closed loop. This allows XGS to produce geothermal energy anywhere where there is hot rock, unlocking terawatt-scale potential in the U.S. alone.

Geothermal systems have also struggled to secure project financing, as many systems have historically faced high levels of unplanned cost risk due to factors including water loss and production uncertainty. XGS’s sealed, closed-loop system ensures that it can provide reliable, predictable electricity throughout its lifespan. XGS also boosts the cost-competitiveness of its system through our major innovation, a proprietary thermally conductive materials system that is installed downhole around each well, increasing the heat transferred to the closed-loop system by 30-50%.

What has drawn you to a career in the geothermal energy space?

I have been in the subsurface industry for over 30 years, developing technical solutions for companies in the fields of geosciences, underground storage, upstream oil and gas, and geothermal heat harvesting to help improve their overall economic, ethical and environmental footprints. In 2009, I founded Curistec, a technology company providing research, engineering and technical services for geomechanics, wellbore integrity, well abandonment, cement design and cement and rock testing. A few years back, Curistec assisted with the Iceland Deep Drilling Project, helping to develop cement formulations for superhot geothermal well applications to enable drilling in high-temperature environments. As I looked toward the future, it became clear that next-generation geothermal technologies would transform the geothermal energy industry and open new markets worldwide. Curistec had been working closely with the XGS Energy team as technology partners for several years, so joining the team directly to help shape the technology development was an exciting opportunity to help develop and deploy a new system to unlock the full terawatt-scale potential of geothermal energy.

Tell us about the 100-meter field demonstration in central Texas completed in 2024 — what all did you and your team learn from the test?

Our 100-meter field demonstration in central Texas marked a significant step in our progress toward deploying geothermal energy in a commercial setting. With this field operation, we successfully demonstrated our ability to mix, pump and place our thermally conductive materials system at a commercial scale, using off-shelf tools and technologies. This was a significant milestone, taking us from theoretical models and laboratory tests to field-scale operations, proving that our novel geothermal system is operationally viable in real-world well conditions.

The completion of the Texas field demonstration advanced XGS into the new wave of geothermal innovators that are putting real steel in the ground. In 2024, we kicked off construction at our commercial-scale demonstration in California and are excited to share updates in the year ahead.

Last year, XGS Energy leased over 10,000 square feet of office space in Memorial City. How has Houston's business community and opportunities benefitted the company?

Houston, the epicenter of the oil and gas industry, has become a hub of energy innovation, offering attractive incentives for growing companies like XGS. The region’s workforce, which is home to some of the best subsurface engineers and operational talent in the energy sector, was a key factor for XGS when we were planning our operational roadmap. This expertise, paired with proximity to our partners in the field services industries, like cementing and drilling, is both a practical and tactical advantage for XGS.

We’ve built a strong technical and operational team here at XGS, with experience from the oil and gas industry, utilities and power project developers. XGS is planning for continued growth in the Houston area, leveraging the region’s leading engineering and operational workforce and its intensifying interest in supporting the energy transition.

What are XGS Energy's goals for 2025?

In 2024, the XGS Energy team made significant progress toward our goal of providing clean, round-the-clock energy with our solid-state geothermal system. In 2025, XGS Energy will be focused on deploying its geothermal system at a commercial scale, starting with the completion of our full-scale prototype in California. XGS will also continue accelerating our commercial traction, expanding our already robust and highly differentiated geothermal resource evaluation toolkit, advancing our global project pipeline, and growing our team to strengthen our operational capability and capacity.

The Meta and Sage Geosystems project is reportedly the first next-generation geothermal project located to the east of the Rocky Mountains. Rendering by Sage Geosystems and Meta

Meta taps Houston geothermal co. to power data center growth with clean energy

big tech

A Houston company has signed a new agreement with Meta Platforms Inc. — Facebook's parent company — to power the tech giant's data center growth.

Houston-based Sage Geosystems agreed to deliver up to 150 megawatts of new geothermal baseload power to Meta. The companies made the announcement this week at the United States Department Energy’s Catalyzing Next Generation Geothermal Development Workshop.

The deal is significant because it's the first next-generation geothermal project located to the east of the Rocky Mountains, the companies report in a news release.

“This announcement is the perfect example of how the public and private sector can work together to make the clean energy transition a reality,” Cindy Taff, CEO of Sage Geosystems, says in the release. “We are thrilled to be at the forefront of the next generation of geothermal technology and applaud the DOE for supporting the commercialization of innovation solutions.

"As energy demand continues to grow, the need for reliable, resilient and sustainable power is paramount and our partnership with Meta underscores the critical need for innovative and sustainable energy solutions like ours,” she continues.

The project's first phase will aim to be operating in 2027. The plans reflect how geothermal is being recognized as a growing carbon-free energy source in the country, and how Meta is committed to clean energy initiatives.

“The U.S. has seen unprecedented growth in demand for energy as our economy grows, the manufacturing sector booms thanks to the Biden-Harris Administration’s Investing in America agenda, and new industries like AI expand,” U.S. Energy Deputy Secretary David Turk says. “The Administration views this increased demand as a huge opportunity to add more clean, firm power to the grid and geothermal energy is a game-changer as we work to grow our clean power supply.”

Sage's technology — called Geopressured Geothermal System — works deep in the earth to develop energy storage and geothermal baseload power.

“Meta thanks the Department of Energy’s leadership on promoting and supporting the exploration of new energy sources like geothermal," Urvi Parekh, head of renewable energy at Meta, says. "That leadership supports Meta’s goal to enable the addition of reliable, affordable, and carbon-free power to the grid with this geothermal energy deal. We are excited to partner with such an innovative company like Sage Geosystems that is a proven leader in geothermal development on this project and beyond.”

Sage recently teamed up with a utility provider for an energy storage facility in the San Antonio metro area to build its three-megawatt EarthStore facility.

The company is also working on an exploratory geothermal project for the Army’s Fort Bliss post in Texas, which is the third U.S. Department of Defense geothermal initiative in the Lone Star State.

GA Drilling opened its Houston office in 2013 to tap into the region’s oil and gas industry. Photo via Getty Images

Drilling tech co. with Houston HQ to partner on European geothermal power plant

growing abroad

GA Drilling, a provider of geothermal drilling technology whose U.S. headquarters is in Houston, is teaming up with a European energy company to develop a geothermal power plant in Germany.

GA Drilling and ZeroGeo Energy, a Swiss company specializing in renewable energy, say the 12-megawatt Hot Dry Rock Geothermal Power Plant (Project THERMO) is the first of several geothermal power and geothermal energy storage projects they’re planning in Europe. GA Drilling will supply technology for Hot Dry Rock, and ZeroGEO will operate the plant.

“The need for clean baseload power is real, and geothermal has the highest potential to deliver that safely and securely. We’re excited to be collaborating with ZeroGeo to help address the power needs in Europe,” Dusan Kocis, co-founder and chief operating officer of Slovakia-based GA Drilling, says in a news release.

GA Drilling opened its Houston office in 2013 to tap into the region’s oil and gas industry.

Last year, GA Drilling conducted the first public demonstration of its latest deep drilling tool, ANCHORBIT. GA Drilling says it developed the tool to cut the cost of deep geothermal drilling by doubling drilling speeds and extending the life of drill bits.

GA Drilling performed the ANCHORBIT test at Nabors Industries’ technology center in Houston. Nabors, a drilling contractor based in Houston, is using GA Drilling’s technology in its drilling operations.

In 2022, Nabors invested $8 million in GA Drilling.

“Given the expected sharp growth in global energy consumption over the next decades, the world will require an even sharper growth in sustainable energy supply. I am convinced that geothermal energy will be a key contributor to the necessary increase in clean energy generation,” Anthony Petrello, chairman, president, and CEO of Nabors, said in an announcement about the GA Drilling investment.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Chevron and ExxonMobil feed the need for gas-powered data centers

data center demand

Two of the Houston area’s oil and gas goliaths, Chevron and ExxonMobil, are duking it out in the emerging market for natural gas-powered data centers—centers that would ease the burden on electric grids.

Chevron said it’s negotiating with an unnamed company to supply natural gas-generated power for the data center industry, whose energy consumption is soaring mostly due to AI. The power would come from a 2.5-gigawatt plant that Chevron plans to build in West Texas. The company says the plant could eventually accommodate 5 gigawatts of power generation.

The Chevron plant is expected to come online in 2027. A final decision on investing in the plant will be made next year, Jeff Gustavson, vice president of Chevron’s low-carbon energy business, said at a recent gathering for investors.

“Demand for gas is expected to grow even faster than for oil, including the critical role gas will play [in] providing the energy backbone for data centers and advanced computing,” Gustavson said.

In January, the company’s Chevron USA subsidiary unveiled a partnership with investment firm Engine No. 1 and energy equipment manufacturer GE Vernova to develop large-scale natural gas power plants co-located with data centers.

The plants will feature behind-the-meter energy generation and storage systems on the customer side of the electricity meter, meaning they supply power directly to a customer without being connected to an electric grid. The venture is expected to start delivering power by the end of 2027.

Chevron rival ExxonMobil is focusing on data centers in a slightly different way.

ExxonMobil Chairman and CEO Darren Woods said the company aims to enable the capture of more than 90 percent of emissions from data centers. The company would achieve this by building natural gas plants that incorporate carbon capture and storage technology. These plants would “bring a unique advantage” to the power market for data centers, Woods said.

“In the near to medium term, we are probably the only realistic game in town to accomplish that,” he said during ExxonMobil’s third-quarter earnings call. “I think we can do it pretty effectively.”

Woods said ExxonMobil is in advanced talks with hyperscalers, or large-scale providers of cloud computing services, to equip their data centers with low-carbon energy.

“We will see what gets translated into actual contracts and then into construction,” he said.

Houston company wins contract to operate South Texas wind farm

wind deal

Houston-based Consolidated Asset Management Services (CAMS), which provides services for owners of energy infrastructure, has added the owner of a South Texas wind power project to its customer list.

The new customer, InfraRed Capital Partners, owns the 202-megawatt Mesteño Wind Project in the Rio Grande Valley. InfraRed bought the wind farm from Charlotte, North Carolina-based power provider Duke Energy in 2024. CAMS will provide asset management, remote operations, maintenance, compliance and IT services for the Mesteño project.

Mesteño began generating power in 2019. The wind farm is connected to the electric grid operated by the Energy Reliability Council of Texas (ERCOT).

With the addition of Mesteño, CAMS now manages wind energy projects with generation capacity of more than 2,500 megawatts.

Mesteño features one of the tallest wind turbine installations in the U.S., with towers reaching 590.5 feet. Located near Rio Grande City, the project produces enough clean energy to power about 60,000 average homes.

In June, CAMS was named to the Financial Times’ list of the 300 fastest-growing companies in North and South America. The company’s revenue grew more than 70 percent from 2020 to 2023.

Earlier this year, CAMS jumped into the super-hot data center sector with the rollout of services designed to help deliver reliable, cost-effective power to energy-hungry data centers. The initiative focuses on supplying renewable energy and natural gas.

Google's $40B investment in Texas data centers includes energy infrastructure

The future of data

Google is investing a huge chunk of money in Texas: According to a release, the company will invest $40 billion on cloud and artificial intelligence (AI) infrastructure, with the development of new data centers in Armstrong and Haskell counties.

The company announced its intentions at a meeting on November 14 attended by federal, state, and local leaders including Gov. Greg Abbott who called it "a Texas-sized investment."

Google will open two new data center campuses in Haskell County and a data center campus in Armstrong County.

Additionally, the first building at the company’s Red Oak campus in Ellis County is now operational. Google is continuing to invest in its existing Midlothian campus and Dallas cloud region, which are part of the company’s global network of 42 cloud regions that deliver high-performance, low-latency services that businesses and organizations use to build and scale their own AI-powered solutions.

Energy demands

Google is committed to responsibly growing its infrastructure by bringing new energy resources onto the grid, paying for costs associated with its operations, and supporting community energy efficiency initiatives.

One of the new Haskell data centers will be co-located with — or built directly alongside — a new solar and battery energy storage plant, creating the first industrial park to be developed through Google’s partnership with Intersect and TPG Rise Climate announced last year.

Google has contracted to add more than 6,200 megawatts (MW) of net new energy generation and capacity to the Texas electricity grid through power purchase agreements (PPAs) with energy developers such as AES Corporation, Enel North America, Intersect, Clearway, ENGIE, SB Energy, Ørsted, and X-Elio.

Water demands

Google’s three new facilities in Armstrong and Haskell counties will use air-cooling technology, limiting water use to site operations like kitchens. The company is also contributing $2.6 million to help Texas Water Trade create and enhance up to 1,000 acres of wetlands along the Trinity-San Jacinto Estuary. Google is also sponsoring a regenerative agriculture program with Indigo Ag in the Dallas-Fort Worth area and an irrigation efficiency project with N-Drip in the Texas High Plains.

In addition to the data centers, Google is committing $7 million in grants to support AI-related initiatives in healthcare, energy, and education across the state. This includes helping CareMessage enhance rural healthcare access; enabling the University of Texas at Austin and Texas Tech University to address energy challenges that will arise with AI, and expanding AI training for Texas educators and students through support to Houston City College.

---

This article originally appeared on CultureMap.com.