fresh funding

Houston geothermal company closes $13M in investments to fuel growth

XGS Energy plans to “aggressively expand” its team in Houston this year thanks to its latest round of investments. Photo via Getty Images

XGS Energy, a California-headquartered geothermal power company with a major presence in Houston, has closed $13 million in new financing that included new investors Aligned Climate Capital, ClearSky, ClimateIC and WovenEarth Ventures, in addition to inside investors.

The company plans to “aggressively expand” its team in Houston this year, according to a news release.

“We are facing global energy supply challenges of unprecedented scale and urgency,” Kevin Kimsa, Managing Partner at ClimateIC, said in the release. “The XGS team is uniquely primed to meet the moment, bringing together innovative technology and leading engineering talent with the deep experience in infrastructure development and financing critical to deploying large-scale energy systems at speed.”

As part of the financing deal, Mano Nazar, ClearSky Senior Advisor and the former Chief Nuclear Officer of NextEra Energy, will join the XGS Energy Board of Directors.

“XGS’s advanced geothermal technology is uniquely positioned to deliver abundant energy to the grid faster than any other baseload energy technology at a time of unprecedented demand for energy resources,” Nazar said in a news release. “We are excited to partner with XGS to deliver on their mission of sustainable, reliable, and scalable geothermal energy.”

XGS is known for its next-gen closed-loop geothermal well architecture. The company saw massive growth in the Houston market last year and recently completed a 100-meter field demonstration in central Texas. The new funding supports the XGS’s multi-gigawatt project pipeline.

The recent financing also builds on an oversubscribed Series A round led by Constellation Technology Ventures, VoLo Earth Ventures, and Valo Ventures that closed last year.

Trending News

A View From HETI

Rice's Atin Pramanik and a team in Pulickel Ajayan's lab shared new findings that offer a sustainable alternative to lithium batteries by enhancing sodium and potassium ion storage. Photo by Jeff Fitlow/Courtesy Rice University

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

Trending News