Energy Tech Nexus has opened in downtown Houston. Photo by Natalie Harms/EnergyCapital

Three Houston energy innovators have cut the ribbon on a new space for energy transition innovation.

The Energy Tech Nexus, located in the historic Niels Esperson Building at the corner of Travis and Rusk Avenue, opened on September 10, which was proclaimed Energy Tech Nexus Day by the city.

Jason Ethier and Juliana Garaizar, formerly in leadership roles at Greentown Labs, teamed up with Nada Ahmed, previously headed innovation and transformation at Aker Solutions, launched ETN as a community for energy transition startups. The new hub plans to host incubation programs, provide mentorship, and open doors to funding and strategic partnerships for its members.

"We are creating more than a space for innovation," Garaizar says in a news release. "We are crafting a community where pioneers in technology and energy converge to challenge the status quo and accelerate the shift to sustainable energy solutions."

The hub describes its goal of tackling the "trilemma" of energy security, sustainability, and affordability while also contributing to the mission of setting up Houston as the global center for energy transition. To accomplish that mission, ETN will help facilitate rapid deployment of cutting-edge energy technologies.

'The future of energy is not just being written here in Houston; it's being rewritten in more sustainable, efficient, and innovative ways," adds Garaizar. "Houston provides the perfect backdrop for this transformation, offering a rich history in energy and a forward-looking approach to its challenges and opportunities."

"We believe that a broad spectrum of perspectives is crucial in solving global energy challenges. It's about bringing everyone to the table — startups, industry leaders, and investors from all backgrounds," she continues.

Ethier, who co-hosts the Energy Tech Startups Podcast with Ahmed, says he hopes that ETN acts as a meeting place for energy transition innovators.

"By providing the right tools, access, and expertise, we are enabling these companies to leap from ideation to implementation at an unprecedented pace;" Ethier explains. "The interaction between startups and established companies within Energy Tech Nexus creates a unique synergy, fostering innovations that might otherwise take years to mature in isolation."

Payal Patel, an angel investor who has held leadership roles at Station Houston, Plug and Play Ventures, and Softeq, also contributed to launching ETN, which is collaborating with George Liu, who has over 15 years of investment banking experience across energy, cleantech and hardtech with more than $20 billion in M&A projects across his career.

In May, ETN teamed up with Impact Hub Houston to establish the Equitable Energy Transition Alliance and Lab to accelerate startup pilots for underserved communities. The initiative announced that it's won the 2024 U.S. Small Business Administration Growth Accelerator Fund Competition, or GAFC, Stage One award.

ETN celebrated its opening during the inaugural Houston Energy and Climate Week.

Debalina Sengupta has been named as the chief operating officer of UH's Energy Transition Institute. Photo via UH.edu

University of Houston names new energy transition-focused executive

leading the way

The University of Houston has named a new C-level executive to its energy transition-focused initiative.

Debalina Sengupta has been named as the chief operating officer of UH's Energy Transition Institute, which was established in 2022 by a $10 million commitment from Shell USA Inc. and Shell Global Solutions (US) Inc. The institute focuses on hydrogen, carbon management and circular plastics and works closely with UH’s Hewlett Packard Enterprise Data Science Institute and researchers across the university.

Sengupta, who was previously a chemical engineer with over 18 years of experience with sustainability and resilience issues, was called to ETI’s mission and its focus on Houston, which is home to more than 4,500 energy companies and a pivotal international oil and gas hub.

“UH Energy Transition Institute is the first of its kind Institute setup in Texas that focuses solely on the transition of energy,” she says in a news release. “A two-way communication between the academic community and various stakeholders is necessary to implement the transition and I saw the UH ETI role enabling me to achieve this critical goal.”

Originally from India, where she saw first-hand the impact of natural disasters, she has been working with Texas coastal communities over the past two years to not help bring coastal resilience projects along the coast. The Texas coast will serve potentially as an economic development zone for several energy transition projects.

“It is necessary that we think deeply about sustainability quantification for our energy systems, diversify and expand from fossil to non-fossil resources, and understand how it can impact our future generations,” Sengupta continues. “This requires rigorous training and adopting new technologies that will enable the change, and I am dedicated to work towards this goal for UH ETI.”

Sengupta has also worked as a postdoctoral research fellow in the U.S. Environmental Protection Agency. She has a bachelor’s degree in chemical engineering from Jadavpur University in India and a doctorate from Louisiana State University with a focus on process systems engineering. Sengupta previously was at Texas A&M University where she was the Coastal Resilience Program director for Texas Sea Grant,which is a federal-state partnership program funded by the U.S. Department of Commerce National Oceanic and Atmospheric Administration. She has served as the associate director of the Texas A&M Engineering Experiment Station’s Gas and Fuels Research Center; coordinator of the Water, Energy and Food Nexus at Texas A&M Energy Institute; and lecturer at the Artie McFerrin Department of Chemical Engineering.

The ETI has helped catalyze “cross-disciplinary cooperation” to expand funding opportunities for UH faculty, which includes direct funding of over 24 projects via seed grants. As the new COO, Sengupta will work alongside founding executive director of the institute, Joe Powell, their executive team and the ETI advisory board to develop and implement strategic plans. Her position is partially funded by a $500,000 grant from the Houston-based Cullen Foundation.

“We are excited to have Dr. Sengupta join us at UH to help drive the Energy Transition Institute to fulfill its mission in educating students, expanding top-tier research, and providing thought leadership in sustainable energy and chemicals for the Houston area and beyond,” Powell adds. “Dr. Sengupta brings a strong background and network in collaborating with academic, community, governmental and industry partners to build the coalitions needed for success.”

The PhD and doctoral students will each receive a one-year $12,000 fellowship, along with mentoring from experts at UH and Chevron. Photo via UH.edu

University of Houston names first group of Chevron-backed fellows

meet the chosen ones

The University of Houston has named eight graduate students to its first-ever cohort of UH-Chevron Energy Graduate Fellows.

The PhD and doctoral students will each receive a one-year $12,000 fellowship, along with mentoring from experts at UH and Chevron. Their work focuses on energy-related research in fields ranging from public policy to geophysics and math. The fellowship is funded by Chevron.

“The UH-Chevron Energy Fellowship program is an exciting opportunity for our graduate students to research the many critical areas that impact the energy industry, our communities and our global competitiveness,” Ramanan Krishnamoortil UH's Vice President for Energy and Innovation says in a statement.

“Today’s students not only recognize the importance of energy, but they are actively driving the push for affordable, reliable, sustainable and secure energy and making choices that clearly indicate that they are meaningfully contributing to the change,” he continues.

“We love that Chevron is sponsoring this group of fellows because it’s a fantastic way for us to get involved with the students who are working on some of the biggest problems we’ll face in society,” Chevron Technology Ventures President Jim Gable adds.

The 2023 UH-Chevron Energy Graduate Fellows are:

Kripa Adhikari, a Ph.D. student in the Department of Civil and Environmental Engineering in the Cullen College of Engineering. Her work focuses on thermal regulation in enhanced geothermal systems. She currently works under the mentorship of Professor Kalyana Babu Nakshatrala and previously worked as a civil engineer with the Nepal Reconstruction Authority.

Aparajita Datta, a researcher at UH Energy and a Ph.D. candidate in the Department of Political Science. Her work focuses on the federal Low-Income Home Energy Assistance Program (LIHEAP), a redistributive welfare policy designed to help households pay their energy bills. She holds a bachelor’s degree in computer science and engineering from the University of Petroleum and Energy Studies in India, and master’s degrees in energy management and public policy from UH. She also recently worked on a paper for UH about transportation emissions.

Chirag Goel, a Ph.D. student in materials science and engineering at UH. His work focuses on using High Temperature Superconductors (HTS) to optimize manufacturing processes, which he says can help achieve carbon-free economies by 2050. The work has uses in renewable energy generation, electric power transmission and advanced scientific applications.

Meghana Idamakanti, a third-year Ph.D. student in the William A. Brookshire Department of Chemical and Biomolecular Engineering. Her work focuses on using electrically heated steam methane for cleaner hydrogen production. She received her bachelor’s degree in chemical engineering from Jawaharlal Nehru Technological University in India in 2020 and previously worked as a process engineering intern at Glochem Industries in India.

Erin Picton, an environmental engineering Ph.D. student in the Shaffer Lab at UH. Her work focuses on ways to increase the sustainability of lithium processing and reducing wasted water and energy. “I love the idea of taking waste and turning it into value,” she said in a statement. She has previously worked in collaboration with MIT and Greentown Labs, as chief sustainability officer of a Houston-based desalination startup; and as a visiting graduate researcher at Argonne National Lab and at INSA in Lyon, France.

Mohamad Sarhan, a Ph.D. student and a teaching assistant in the Department of Petroleum Engineering. His work focuses on seasonal hydrogen storage and the stability of storage candidates during hydrogen cycling. He holds a bachelor’s degree and a master’s degree in petroleum engineering from Cairo University

Swapnil Sharma, a Ph.D. student in the William A. Brookshire Department of Chemical and Biomolecular Engineering. His work has been funded by the Department of Energy and focuses on thermal modeling of large-scale liquid hydrogen storage tanks. He works with Professor Vemuri Balakotaiah. He holds bachelor's and master’s degrees in chemical engineering from the Indian Institute of Technology (IIT). He also developed one of the world’s highest fiber-count optical fiber cables while working in India and founded CovRelief, which helped millions of Indians find resources about hospital beds, oxygen suppliers and more during the pandemic.

Larkin Spires, who's working on her doctoral research in the Department of Earth and Atmospheric Sciences in the College of Natural Sciences and Mathematics. Her work focuses on a semi-empirical Brown and Korringa model for fluid substitution and the ties between geophysics and mathematics. She works under Professor John Castagna and holds a bachelor’s degree in math from Louisiana State University and a master’s degree in geophysics from UH.

Earlier this month Evolve Houston also announced its first-ever cohort of 13 microgrant recipients, whose work aims to make EVs and charging infrastructure more accessible in some of the city's more underserved neighborhoods.

The Houston Energy Transition Initiative spoke with Ramanan Krishnamoorti about the future of energy. Image via htxenergytransition.org

Empowering the next generation: Q&A with Ramanan Krishnamoorti

THE VIEW FROM HETI

College students stand at the intersection of youth climate activism and emerging academic research that has the power to reshape the future of energy. Dr. Ramanan Krishnamoorti believe that college students have the power to tackle some of the world’s most pressing issues in energy, if given the opportunity. Krishnamoorti serves as University of Houston Vice President for Energy and Innovation and professor of chemical and biomolecular engineering is leading the university’s efforts to establish education, research and outreach partnerships to address energy and innovation challenges.

HETI sat down with Dr. Krishnamoorti to learn more about his journey in the energy industry, the importance of engaging the youth in climate change and how community partners can give college students a seat at the energy transition table.

Q: You have a passionate way of speaking about the energy transition and the mission to get to net zero by 2050. Tell us about your background in the energy industry.

My journey in the energy industry began in academia as a chemical engineer, where my early scientific focus revolved around polymeric materials, which are closely tied to the industrial and societal applications of oil and gas beyond traditional fuels.

During the early 2000s, when our society faced an energy shortage and was grappling with pressing challenges, my interest in the broader energy landscape began to take shape. It was during that time that I assumed the role of chair of the Chemical Engineering Department at the University of Houston, which provided me the remarkable opportunity to establish the petroleum engineering program (eventually department), fostering close collaboration with industry stakeholders.

This experience granted me invaluable insights into the intricate operations of the energy industry as a whole, which ultimately led to me becoming the chief energy officer at UH. Over the past decade, my deep engagement across the energy industry has allowed me to fully grasp the immense value of energy and the critical challenges we face in ensuring that it remains affordable, reliable and sustainable.

Q: When it comes to the renewable energy workforce, you’ve spoken about the need to engage current K-12 students in STEM to ensure a robust talent pool in the future. What are some ways we can help students recognize their potential as change agents in the energy transition?

In today’s rapidly evolving energy landscape, success hinges on attracting a diverse and talented workforce, whether it be in the conventional oil and gas sector, the decarbonization realm (energy transition) or the renewable energy industry. Creating a broad and inclusive pathway that appeals to students from middle school onwards is crucial. We must vividly demonstrate the transformative power of their actions and the power of learning by doing. This would inspire them to explore the fundamental disciplines of science, technology, engineering and mathematics. By connecting these academic foundations to real world challenges, we can show them the immense impact they could have in shaping a sustainable and advancing future.

Energy is the lifeblood of modern society, and providing reliable, affordable and sustainable energy for all is our collective responsibility. We must convey to students the robust career opportunities available within the industry as a whole. The skills and knowledge gained in this field are highly transferable, enabling individuals to navigate various sectors and contribute to positive change across the entire energy spectrum but also help transform the world to one of opportunities for humanity.

Q: At the recent Future of Global Energy conference presented by Chevron, you spoke about the importance of empowering young leaders to act and influence decisions around energy, climate change and sustainability. How can leading energy companies give students and recent graduates a seat at the energy transition table?

Energy companies need to recognize the passion and impatience of this new generation and tap into it. These young individuals are eager to be part of the solution and are driven by a desire for tangible success in the challenge of building an equitable and sustainable energy sector. By providing opportunities for hands-on experience and learning-by-doing, energy companies can channel their enthusiasm and leverage their digital native mindset to develop scalable solutions for the grand challenge of energy solutions across the world.

Moreover, fostering a culture of mentorship and giving back is essential. Students and recent graduates have a strong inclination to make a positive societal impact. By offering organized mentorship programs within K-12 schools and higher education institutions, they can provide avenues for young talent to contribute meaningfully and gain valuable insights and guidance from industry professionals.

Lastly, it’s crucial for energy companies to recognize and embrace the inherent consideration of environmental, social and governance issues by the new generation of entrants. When confronted by complex engineering challenges, these young leaders naturally bring a constructive perspective that incorporates ESG considerations. By actively engaging with their perspectives, companies can benefit from fresh ideas and contribute to the overall advancement of sustainable practices.

Q: Do you believe that actions and initiatives put in place by young people have the power to trigger the momentum needed to help scale energy transition related businesses?

Absolutely! The energy transition demands innovative approaches to rapidly scale up technologies, while simultaneously addressing regulatory, financial and communication engagement challenges that may lag.

The new generation of students and industry entrants have demonstrated their ability to navigate bureaucratic systems that are two steps behind the problems they face, making them adept problem solvers. By empowering and supporting them, we can leverage their strengths to confront energy transition challenges head on. This team effort, combining their fresh perspectives with the necessary resources, will accelerate momentum and drive the scaling of energy transition-related businesses.

Q: Do students today recognize the importance of the energy transition?

Today’s students not only recognize the importance of the energy transition, but they are actively driving it and making choices that clearly indicate that they are meaningfully contributing to the change. They embrace risk-taking and innovative approaches to solve real-world energy challenges –– they are comfortable in a world where they understand the issue of bottlenecks (as is common in the complex energy systems) and the need for trade-offs.

What sets them apart is their dedication to promoting justice and equity. In fact, a recent poll conducted in collaboration with the UH Hobby School of Public Affairs revealed that many UH students prioritize companies committed to addressing societal and environmental issues, even if it means a sacrifice in salary. Their commitment speaks volumes about their desire to drive change.

Q: Looking toward the future of energy, how can universities and community partners provide support that fuels innovation and energy expertise in the youth today?

To fuel innovation and cultivate energy expertise in today’s youth, universities, industry leaders and community partners must collaborate. At the University of Houston, where approximately half of students are first-generation, it is our responsibility as educators to provide vital support. This includes facilitating connections, showcasing role models and expanding their awareness of opportunities. As the energy university located in Houston, a city rich in diverse talent, we have a unique advantage of continuing to build on Houston’s global leadership and demonstrating solutions at scale. By fostering this collaboration, we can inspire and empower the next generation.

------

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Just what does 'energy transition' mean, anyway? Photo via Shutterstock

Defining ‘energy transition’ — and the semantics involved in it

Guest column

The term “energy transition” is fraught with misconceptions, but not just because of the varied interpretation of the term “transition.” The Energy101 series on EnergyCapitalHTX.com brings clarity to both terms with simple and direct information that anyone can understand. As explored in a previous conversation with ChatGPT, we are all part of the Energy Industry, so its high time we all understood it.

DEFINING TERMINOLOGY

Merriam-Webster defines transition as “a change or shift from one state, subject, place, etc. to another.” The popular interpretation of ‘energy transition’ implies a complete shift away from energy produced from fossil fuels to energy produced from renewable sources. This isn’t entirely accurate–let’s explore why.

“The challenge of our lifetime is addressing [the] dual challenge of meeting increased global energy demand while confronting global climate change” says Jane Stricker, executive director of the Houston Energy Transition Initiative and senior vice president, Greater Houston Partnership. This globally inclusive definition of ‘energy transition’ focuses on addressing objectives instead of proffering solutions–a common project management viewpoint through which opportunities are explored.

It's a simple, but effective, way to expand one’s line of thinking from acute problem solving to broader root-cause analysis. In other words, it is how we elevate from playing checkers to mastering chess.

DEFINING THE OPPORTUNITY

The United Nations tells us the world’s population reached 8 billion in late 2022, an increase of more than one billion people in just over a decade. During the same time frame, the number of people around the world without consistent access to electricity declined from approximately 1.2 billion to 775 million per the International Energy Agency (IEA) 2022 World Energy Outlook report. A commendable feat, no doubt, but the fact remains that about 10% of the world’s population still lives in energy poverty–and that number is increasing.

The first half of Stricker’s sentiment, the challenge of “meeting increased global energy demand” reflects these statistics, albeit almost poetically. To state the issue more plainly, one could ask, “how do we get more energy to more people?” Taking it one step further, we can split that inquiry into two basic questions: (1) how to get more energy, and (2) how to reach more people. This is where it gets interesting.

As explored in the inaugural Energy 101 article, energy is converted into usable form through one of three reactions. Mechanical and nuclear reactions that create electricity for immediate consumption are often deemed “cleaner” than those produced by chemical reaction, but the challenges of delivering more energy consistently and reaching more people are left shortchanged due to intermittent production and limited distribution mechanisms.

In recent history, this has left us to rely upon energy produced by chemical reactions from fossil fuels and/or batteries. Batteries have inherently been the more expensive option, mostly because of the limited supply of minerals necessary to effectively store and transport energy for later use in these contained systems. Hence, the heavy reliance on cheap fossil fuels.

REFINED CONSTRAINTS DEMAND NEW SOLUTIONS

With price as the determining factor influencing the modern world’s energy supply, oil and natural gas have scrambled to compete with coal, which is affordable and easily transportable. However, coal has one major drawback–using it accounts for approximately 20% of carbon emissions, more than oil and gas industrial use, combined, per calculations from the U.S. Energy Information Agency.

We have a duty to get more energy to more people, “while confronting global climate change,” as Stricker states. In the context of energy poverty, where more consistent access to more electricity needs to reach more people, energy needs not only be abundant, reliable, affordable, and accessible, but also, less toxic.

So far, we have yet to find a solution that meets all these conditions, so we have made trade-offs. The ‘energy transition’ merely reflects the energy industry’s latest acceptance of the next hurdle to enhance our lives on earth. As depicted by the image from the IEA below, it most certainly reflects a reduction in the reliance on coal for electricity production, but how that energy reduction will be off set remains yet to be determined.

It's an opportunity ripe for exploration while existing sources push to meet the expanding definition of sustainable energy–a shift in evaluation criteria, some might say. Perhaps even a transition.

Stacked chart showing demand of natural gas, coal, and oil from 1900 to 2050 (estimated)Demand for natural gas and oil are expected to level out, as demand for coal shrinks to meet goals for lower carbon emissions. Photo courtesy of IEA, license CC by 4.0Demand for natural gas and oil are expected to level out, as demand for coal shrinks to meet goals for lower carbon emissions. Photo courtesy of IEA, license CC by 4.0


------

Lindsey Ferrell is a contributing writer to EnergyCapitalHTX and founder of Guerrella & Co.

Rising temps could result in rolling brownouts this summer–unless we work together to reduce the strain on the electric grid. Photo via Shutterstock

NERC warns of summer energy shortfalls–what you can do now

THINGS ARE HEATING UP

The North American Electric Reliability Council (NERC) issued a warning with the 2023 Summer Reliability Assessment yesterday – energy shortages could be coming this summer for two-thirds of North America if temperatures spike higher than normal.

“Increased, rapid deployment of wind, solar and batteries have made a positive impact,” Mark Olson, NERC’s manager of reliability assessments says in the release. “However, generator retirements continue to increase the risks associated with extreme summer temperatures, which factors into potential supply shortages in the western two-thirds of North America if summer temperatures spike.”

For Texans, the combined risk of drought and higher-than-normal temperatures could stress ERCOT system resources, especially in the case of reduced wind. But before there’s a mad rush on generators, keep in mind, electricity consumers can take simple actions to minimize the possibility of widespread shortfalls.

Electricity demand begins rising daily around 2 P.M. in the summer and peaks in the final hours of daylight. These hours are generally not only the warmest hours of the day but also the busiest. People return from work to their homes, crank down the air conditioner, turn on TVs, run a load of wash, and prepare meals using multiple electric-powered appliances.

If everyone takes one or two small steps to avoid unnecessary stress on the grid in the hours after coming home from work, we can prevent energy shortfalls. Modify routines now to get into the habit of running the dishwasher overnight, using the washer and dryer before noon or after 8 pm and pulling the shades down in the bright afternoon hours of the day.

Try to delay powering up devices – including EVs – until after dark. Turn off and unplug items to avoid sapping electricity when items are not in use. And if you can bear it, nudge that thermostat up a couple of degrees.

Energy sustainability demands consistent collaboration and coordination from every consumer of energy. Let’s get in the habit of acting neighborly now with conservative electricity practices before we start seeing temperatures–of both the literal and figurative kind–flare.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Chevron names inaugural cohort of energy transition graduate students at Rice University

ready to innovate

A new program from Rice University and Chevron has named its inaugural cohort.

Funded by Chevron, the Chevron Energy Graduate Fellowship will provide $10,000 each to 10 Rice graduate students for the current academic year, which supports research in energy-related fields.

The Rice Sustainability Institute (RSI) hosted the event to introduce the inaugural cohort of the Rice Chevron Energy Graduate Fellowship at the Ralph S. O’Connor Building for Engineering and Science. Director of the RSI and the W. Maurice Ewing Professor in Earth, Environmental and Planetary Sciences, Carrie Masiello presented each fellow with a certificate during the ceremony.

“This fellowship supports students working on a wide range of topics related to scalable innovations in energy production that will lead to the reduction of carbon dioxide emissions,” Masiello says in a news release. “It’s important that we recognize the importance of intellectual diversity to the kind of problem-solving we have to do as we accomplish the energy transition.”

The work of the students focuses on creating "real-world, scalable solutions to transform the energy landscape,” per the Rice release. Recipients of the fellowship will research solutions to energy challenges that include producing eco-friendly hydrogen alternatives to fossil fuels and recycling lithium-ion batteries.

Some of the fellows' work will focus on renewable fuels and carbon-capture technologies, biological systems to sequester carbon dioxide, and the potential of soil organic carbon sequestration on agricultural land if we remove the additionality constraint. Xi Chen, a doctoral student in materials science and nanoengineering, will use microwave-assisted techniques to recycle lithium-ion batteries sustainably.

Rice President Reginald DesRoches began the event by stressing the importance of collaboration. Ramamoorthy Ramesh, executive vice president for research at Rice, echoed that statement appearing via Zoom to applaud the efforts of doing what is right for the planet and having a partner in Chevron.

“I’m excited to support emerging leaders like you all in this room, who are focused on scalable, innovative solutions because the world needs them,” Chris Powers, vice president of carbon capture, utilization and storage and emerging at Chevron New Energies and a Rice alum, says at the event. “Innovation and collaboration across sectors and borders will be key to unlocking the full potential of lower carbon energies, and it’s groups like you, our newest Chevron Fellows, that can help move the needle when it comes to translating, or evolving, the energy landscape for the future.”

To see a full list of fellows, click here.

Houston energy company backs decarbonization startup's $12M series A

money moves

A fresh $12 million round of funding will enable Houston-based Citroniq Chemicals to propel planning, design, and construction of its first decarbonization plant.

An unidentified multinational energy technology company led the series A round, with participation from Houston-based Lummus Technology Ventures and cooperation from the State of Nebraska. The Citroniq plant, which will produce green polypropylene, will be located in Nebraska.

“Lummus’ latest investment in Citroniq builds on this progress and strengthens our partnership, working together to lower carbon emissions in the plastics industry,” Leon de Bruyn, president and CEO of Lummus Technology, says in a news release.

Citroniq is putting together a decarbonization platform designed to annually capture 2 million metric tons of greenhouse gas emissions at each plant. The company plans to invest more than $5 billion into its green polypropylene plants. Polypropylene is a thermoplastic resin commonly used for injection molding.

The series A round “is just the first step in our journey towards building multiple biomanufacturing hubs, boosting the Nebraska bioeconomy by converting local ethanol into valuable bioplastics,” says Kelly Knopp, co-founder and CEO of Citroniq.

Citroniq’s platform for the chemical and plastics industries uses technology and U.S.-produced ethanol to enable low-cost carbon capture. Citroniq’s process permanently sequesters carbon into a useful plastic pellet.

Lummus Technology licenses process technologies for clean fuels, renewables, petrochemicals, polymers, gas processing and supply lifecycle services, catalysts, proprietary equipment, and digital transformation.

———

This article originally ran on InnovationMap.