The PhD and doctoral students will each receive a one-year $12,000 fellowship, along with mentoring from experts at UH and Chevron. Photo via UH.edu

The University of Houston has named eight graduate students to its first-ever cohort of UH-Chevron Energy Graduate Fellows.

The PhD and doctoral students will each receive a one-year $12,000 fellowship, along with mentoring from experts at UH and Chevron. Their work focuses on energy-related research in fields ranging from public policy to geophysics and math. The fellowship is funded by Chevron.

“The UH-Chevron Energy Fellowship program is an exciting opportunity for our graduate students to research the many critical areas that impact the energy industry, our communities and our global competitiveness,” Ramanan Krishnamoortil UH's Vice President for Energy and Innovation says in a statement.

“Today’s students not only recognize the importance of energy, but they are actively driving the push for affordable, reliable, sustainable and secure energy and making choices that clearly indicate that they are meaningfully contributing to the change,” he continues.

“We love that Chevron is sponsoring this group of fellows because it’s a fantastic way for us to get involved with the students who are working on some of the biggest problems we’ll face in society,” Chevron Technology Ventures President Jim Gable adds.

The 2023 UH-Chevron Energy Graduate Fellows are:

Kripa Adhikari, a Ph.D. student in the Department of Civil and Environmental Engineering in the Cullen College of Engineering. Her work focuses on thermal regulation in enhanced geothermal systems. She currently works under the mentorship of Professor Kalyana Babu Nakshatrala and previously worked as a civil engineer with the Nepal Reconstruction Authority.

AparajitaDatta, a researcher at UH Energy and a Ph.D. candidate in the Department of Political Science. Her work focuses on the federal Low-Income Home Energy Assistance Program (LIHEAP), a redistributive welfare policy designed to help households pay their energy bills. She holds a bachelor’s degree in computer science and engineering from the University of Petroleum and Energy Studies in India, and master’s degrees in energy management and public policy from UH. She also recently worked on a paper for UH about transportation emissions.

ChiragGoel, a Ph.D. student in materials science and engineering at UH. His work focuses on using High Temperature Superconductors (HTS) to optimize manufacturing processes, which he says can help achieve carbon-free economies by 2050. The work has uses in renewable energy generation, electric power transmission and advanced scientific applications.

MeghanaIdamakanti, a third-year Ph.D. student in the William A. Brookshire Department of Chemical and Biomolecular Engineering. Her work focuses on using electrically heated steam methane for cleaner hydrogen production. She received her bachelor’s degree in chemical engineering from Jawaharlal Nehru Technological University in India in 2020 and previously worked as a process engineering intern at Glochem Industries in India.

ErinPicton, an environmental engineering Ph.D. student in the Shaffer Lab at UH. Her work focuses on ways to increase the sustainability of lithium processing and reducing wasted water and energy. “I love the idea of taking waste and turning it into value,” she said in a statement. She has previously worked in collaboration with MIT and Greentown Labs, as chief sustainability officer of a Houston-based desalination startup; and as a visiting graduate researcher at Argonne National Lab and at INSA in Lyon, France.

Mohamad Sarhan, a Ph.D. student and a teaching assistant in the Department of Petroleum Engineering. His work focuses on seasonal hydrogen storage and the stability of storage candidates during hydrogen cycling. He holds a bachelor’s degree and a master’s degree in petroleum engineering from Cairo University

Swapnil Sharma, a Ph.D. student in the William A. Brookshire Department of Chemical and Biomolecular Engineering. His work has been funded by the Department of Energy and focuses on thermal modeling of large-scale liquid hydrogen storage tanks. He works with Professor Vemuri Balakotaiah. He holds bachelor's and master’s degrees in chemical engineering from the Indian Institute of Technology (IIT). He also developed one of the world’s highest fiber-count optical fiber cables while working in India and founded CovRelief, which helped millions of Indians find resources about hospital beds, oxygen suppliers and more during the pandemic.

LarkinSpires, who's working on her doctoral research in the Department of Earth and Atmospheric Sciences in the College of Natural Sciences and Mathematics. Her work focuses on a semi-empirical Brown and Korringa model for fluid substitution and the ties between geophysics and mathematics. She works under Professor John Castagna and holds a bachelor’s degree in math from Louisiana State University and a master’s degree in geophysics from UH.

Earlier this month Evolve Houston also announced its first-ever cohort of 13 microgrant recipients, whose work aims to make EVs and charging infrastructure more accessible in some of the city's more underserved neighborhoods.

The Houston Energy Transition Initiative spoke with Ramanan Krishnamoorti about the future of energy. Image via htxenergytransition.org

Empowering the next generation: Q&A with Ramanan Krishnamoorti

THE VIEW FROM HETI

College students stand at the intersection of youth climate activism and emerging academic research that has the power to reshape the future of energy. Dr. Ramanan Krishnamoorti believe that college students have the power to tackle some of the world’s most pressing issues in energy, if given the opportunity. Krishnamoorti serves as University of Houston Vice President for Energy and Innovation and professor of chemical and biomolecular engineering is leading the university’s efforts to establish education, research and outreach partnerships to address energy and innovation challenges.

HETI sat down with Dr. Krishnamoorti to learn more about his journey in the energy industry, the importance of engaging the youth in climate change and how community partners can give college students a seat at the energy transition table.

Q: You have a passionate way of speaking about the energy transition and the mission to get to net zero by 2050. Tell us about your background in the energy industry.

My journey in the energy industry began in academia as a chemical engineer, where my early scientific focus revolved around polymeric materials, which are closely tied to the industrial and societal applications of oil and gas beyond traditional fuels.

During the early 2000s, when our society faced an energy shortage and was grappling with pressing challenges, my interest in the broader energy landscape began to take shape. It was during that time that I assumed the role of chair of the Chemical Engineering Department at the University of Houston, which provided me the remarkable opportunity to establish the petroleum engineering program (eventually department), fostering close collaboration with industry stakeholders.

This experience granted me invaluable insights into the intricate operations of the energy industry as a whole, which ultimately led to me becoming the chief energy officer at UH. Over the past decade, my deep engagement across the energy industry has allowed me to fully grasp the immense value of energy and the critical challenges we face in ensuring that it remains affordable, reliable and sustainable.

Q: When it comes to the renewable energy workforce, you’ve spoken about the need to engage current K-12 students in STEM to ensure a robust talent pool in the future. What are some ways we can help students recognize their potential as change agents in the energy transition?

In today’s rapidly evolving energy landscape, success hinges on attracting a diverse and talented workforce, whether it be in the conventional oil and gas sector, the decarbonization realm (energy transition) or the renewable energy industry. Creating a broad and inclusive pathway that appeals to students from middle school onwards is crucial. We must vividly demonstrate the transformative power of their actions and the power of learning by doing. This would inspire them to explore the fundamental disciplines of science, technology, engineering and mathematics. By connecting these academic foundations to real world challenges, we can show them the immense impact they could have in shaping a sustainable and advancing future.

Energy is the lifeblood of modern society, and providing reliable, affordable and sustainable energy for all is our collective responsibility. We must convey to students the robust career opportunities available within the industry as a whole. The skills and knowledge gained in this field are highly transferable, enabling individuals to navigate various sectors and contribute to positive change across the entire energy spectrum but also help transform the world to one of opportunities for humanity.

Q: At the recent Future of Global Energy conference presented by Chevron, you spoke about the importance of empowering young leaders to act and influence decisions around energy, climate change and sustainability. How can leading energy companies give students and recent graduates a seat at the energy transition table?

Energy companies need to recognize the passion and impatience of this new generation and tap into it. These young individuals are eager to be part of the solution and are driven by a desire for tangible success in the challenge of building an equitable and sustainable energy sector. By providing opportunities for hands-on experience and learning-by-doing, energy companies can channel their enthusiasm and leverage their digital native mindset to develop scalable solutions for the grand challenge of energy solutions across the world.

Moreover, fostering a culture of mentorship and giving back is essential. Students and recent graduates have a strong inclination to make a positive societal impact. By offering organized mentorship programs within K-12 schools and higher education institutions, they can provide avenues for young talent to contribute meaningfully and gain valuable insights and guidance from industry professionals.

Lastly, it’s crucial for energy companies to recognize and embrace the inherent consideration of environmental, social and governance issues by the new generation of entrants. When confronted by complex engineering challenges, these young leaders naturally bring a constructive perspective that incorporates ESG considerations. By actively engaging with their perspectives, companies can benefit from fresh ideas and contribute to the overall advancement of sustainable practices.

Q: Do you believe that actions and initiatives put in place by young people have the power to trigger the momentum needed to help scale energy transition related businesses?

Absolutely! The energy transition demands innovative approaches to rapidly scale up technologies, while simultaneously addressing regulatory, financial and communication engagement challenges that may lag.

The new generation of students and industry entrants have demonstrated their ability to navigate bureaucratic systems that are two steps behind the problems they face, making them adept problem solvers. By empowering and supporting them, we can leverage their strengths to confront energy transition challenges head on. This team effort, combining their fresh perspectives with the necessary resources, will accelerate momentum and drive the scaling of energy transition-related businesses.

Q: Do students today recognize the importance of the energy transition?

Today’s students not only recognize the importance of the energy transition, but they are actively driving it and making choices that clearly indicate that they are meaningfully contributing to the change. They embrace risk-taking and innovative approaches to solve real-world energy challenges –– they are comfortable in a world where they understand the issue of bottlenecks (as is common in the complex energy systems) and the need for trade-offs.

What sets them apart is their dedication to promoting justice and equity. In fact, a recent poll conducted in collaboration with the UH Hobby School of Public Affairs revealed that many UH students prioritize companies committed to addressing societal and environmental issues, even if it means a sacrifice in salary. Their commitment speaks volumes about their desire to drive change.

Q: Looking toward the future of energy, how can universities and community partners provide support that fuels innovation and energy expertise in the youth today?

To fuel innovation and cultivate energy expertise in today’s youth, universities, industry leaders and community partners must collaborate. At the University of Houston, where approximately half of students are first-generation, it is our responsibility as educators to provide vital support. This includes facilitating connections, showcasing role models and expanding their awareness of opportunities. As the energy university located in Houston, a city rich in diverse talent, we have a unique advantage of continuing to build on Houston’s global leadership and demonstrating solutions at scale. By fostering this collaboration, we can inspire and empower the next generation.

------

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Just what does 'energy transition' mean, anyway? Photo via Shutterstock

Defining ‘energy transition’ — and the semantics involved in it

Guest column

The term “energy transition” is fraught with misconceptions, but not just because of the varied interpretation of the term “transition.” The Energy101 series on EnergyCapitalHTX.com brings clarity to both terms with simple and direct information that anyone can understand. As explored in a previous conversation with ChatGPT, we are all part of the Energy Industry, so its high time we all understood it.

DEFINING TERMINOLOGY

Merriam-Webster defines transition as “a change or shift from one state, subject, place, etc. to another.” The popular interpretation of ‘energy transition’ implies a complete shift away from energy produced from fossil fuels to energy produced from renewable sources. This isn’t entirely accurate–let’s explore why.

“The challenge of our lifetime is addressing [the] dual challenge of meeting increased global energy demand while confronting global climate change” says Jane Stricker, executive director of the Houston Energy Transition Initiative and senior vice president, Greater Houston Partnership. This globally inclusive definition of ‘energy transition’ focuses on addressing objectives instead of proffering solutions–a common project management viewpoint through which opportunities are explored.

It's a simple, but effective, way to expand one’s line of thinking from acute problem solving to broader root-cause analysis. In other words, it is how we elevate from playing checkers to mastering chess.

DEFINING THE OPPORTUNITY

The United Nations tells us the world’s population reached 8 billion in late 2022, an increase of more than one billion people in just over a decade. During the same time frame, the number of people around the world without consistent access to electricity declined from approximately 1.2 billion to 775 million per the International Energy Agency (IEA) 2022 World Energy Outlook report. A commendable feat, no doubt, but the fact remains that about 10% of the world’s population still lives in energy poverty–and that number is increasing.

The first half of Stricker’s sentiment, the challenge of “meeting increased global energy demand” reflects these statistics, albeit almost poetically. To state the issue more plainly, one could ask, “how do we get more energy to more people?” Taking it one step further, we can split that inquiry into two basic questions: (1) how to get more energy, and (2) how to reach more people. This is where it gets interesting.

As explored in the inaugural Energy 101 article, energy is converted into usable form through one of three reactions. Mechanical and nuclear reactions that create electricity for immediate consumption are often deemed “cleaner” than those produced by chemical reaction, but the challenges of delivering more energy consistently and reaching more people are left shortchanged due to intermittent production and limited distribution mechanisms.

In recent history, this has left us to rely upon energy produced by chemical reactions from fossil fuels and/or batteries. Batteries have inherently been the more expensive option, mostly because of the limited supply of minerals necessary to effectively store and transport energy for later use in these contained systems. Hence, the heavy reliance on cheap fossil fuels.

REFINED CONSTRAINTS DEMAND NEW SOLUTIONS

With price as the determining factor influencing the modern world’s energy supply, oil and natural gas have scrambled to compete with coal, which is affordable and easily transportable. However, coal has one major drawback–using it accounts for approximately 20% of carbon emissions, more than oil and gas industrial use, combined, per calculations from the U.S. Energy Information Agency.

We have a duty to get more energy to more people, “while confronting global climate change,” as Stricker states. In the context of energy poverty, where more consistent access to more electricity needs to reach more people, energy needs not only be abundant, reliable, affordable, and accessible, but also, less toxic.

So far, we have yet to find a solution that meets all these conditions, so we have made trade-offs. The ‘energy transition’ merely reflects the energy industry’s latest acceptance of the next hurdle to enhance our lives on earth. As depicted by the image from the IEA below, it most certainly reflects a reduction in the reliance on coal for electricity production, but how that energy reduction will be off set remains yet to be determined.

It's an opportunity ripe for exploration while existing sources push to meet the expanding definition of sustainable energy–a shift in evaluation criteria, some might say. Perhaps even a transition.

Stacked chart showing demand of natural gas, coal, and oil from 1900 to 2050 (estimated)Demand for natural gas and oil are expected to level out, as demand for coal shrinks to meet goals for lower carbon emissions. Photo courtesy of IEA, license CC by 4.0Demand for natural gas and oil are expected to level out, as demand for coal shrinks to meet goals for lower carbon emissions. Photo courtesy of IEA, license CC by 4.0


------

Lindsey Ferrell is a contributing writer to EnergyCapitalHTX and founder of Guerrella & Co.

Rising temps could result in rolling brownouts this summer–unless we work together to reduce the strain on the electric grid. Photo via Shutterstock

NERC warns of summer energy shortfalls–what you can do now

THINGS ARE HEATING UP

The North American Electric Reliability Council (NERC) issued a warning with the 2023 Summer Reliability Assessment yesterday – energy shortages could be coming this summer for two-thirds of North America if temperatures spike higher than normal.

“Increased, rapid deployment of wind, solar and batteries have made a positive impact,” Mark Olson, NERC’s manager of reliability assessments says in the release. “However, generator retirements continue to increase the risks associated with extreme summer temperatures, which factors into potential supply shortages in the western two-thirds of North America if summer temperatures spike.”

For Texans, the combined risk of drought and higher-than-normal temperatures could stress ERCOT system resources, especially in the case of reduced wind. But before there’s a mad rush on generators, keep in mind, electricity consumers can take simple actions to minimize the possibility of widespread shortfalls.

Electricity demand begins rising daily around 2 P.M. in the summer and peaks in the final hours of daylight. These hours are generally not only the warmest hours of the day but also the busiest. People return from work to their homes, crank down the air conditioner, turn on TVs, run a load of wash, and prepare meals using multiple electric-powered appliances.

If everyone takes one or two small steps to avoid unnecessary stress on the grid in the hours after coming home from work, we can prevent energy shortfalls. Modify routines now to get into the habit of running the dishwasher overnight, using the washer and dryer before noon or after 8 pm and pulling the shades down in the bright afternoon hours of the day.

Try to delay powering up devices – including EVs – until after dark. Turn off and unplug items to avoid sapping electricity when items are not in use. And if you can bear it, nudge that thermostat up a couple of degrees.

Energy sustainability demands consistent collaboration and coordination from every consumer of energy. Let’s get in the habit of acting neighborly now with conservative electricity practices before we start seeing temperatures–of both the literal and figurative kind–flare.

The convergence of green banking with evergreen experimentation in support of a growing green economy sounds like just the right shade of green. Photo by micheile henderson/Unsplash

Green banking meets evergreen R&D with recent MOU

MONEY + MATTER

The term “Energy Transition” doesn’t merely imply change, it demands it. And with change comes another kind of change–usually of the dollars and cents kind.

While many aspire to embrace more sustainable and cleaner energy solutions in their communities, the affluence needed to deploy necessary infrastructure often sits just outside of reach. Until now, that is.

With the rise of “green banking,” securing financing for the adoption of energy efficiency, implementation of decarbonization technologies, and broader provision of renewable energy is now more accessible. Funds at green banks, backed by a blend of public and philanthropic contributions, tap into the modern trend of crowdfunding to support egalitarian and climate improvement efforts.

However, green bank financing is structured with repayment of–or a return on–capital expected at the end of the term, meaning approval tends only to be granted to proven and established projects well past the research and development stage. Given the Energy Transition is, for the most part, still in its infancy, clearing such hurdles can be difficult.

But Houston is full of dreamers and doers; researchers and entrepreneurs eager to tackle the next big challenge. It would come as no surprise then, that Texas’ first green bank, the Clean Energy Fund of Texas (“CEFTx”), bucks tradition with a novel Memorandum Of Understanding (“MOU”) co-signed by the Houston Advanced Research Center (“HARC”) to finance efforts staunchly entrenched in R&D activity.

As the Energy Transition foothold grows, Houstonians are compelled not just to invest in green initiatives, but to drive them. Which only makes sense, considering the deep expertise in energy innovation led most recently by the Houston-area shale revolutionaries from Mitchell Energy. Established over 40 years ago by George P. Mitchell himself, HARC plants the seeds of transformation at the intersection of science, resilience, sustainability, and the environment.

Per the March 29 news release from CEFTx, John Hall, President & CEO of HARC says, “We are excited to join forces with the team at Clean Energy Fund of Texas as they drive green investment in low-income and disadvantaged communities. Our research expertise and experience in managing state and federal grants will be a true benefit to Texans.”

The recent MOU brings Energy Transition visionaries the capital necessary to explore, test, develop, and deploy innovative solutions from conception to maturity. Entrepreneurs at all stages of the business lifecycle are encouraged to apply for funding on the CEFTx website or connect with HARC at an upcoming event to discover how the two entities can take ideas from dream to reality.

“It’s an honor to work with the esteemed researchers at HARC, who have been studying sustainability for decades,” says Stephen Brown of CEFTx in the release. “Together we can be even more effective at kickstarting investments in solar power, retrofits, and other technologies that help create the green workforce of tomorrow.”

The fresh approach to funding set up by CEFTx and HARC positions new companies to succeed and enables existing companies to progress in the transition to a more sustainable #futureofenergy. It’s just the sort of sense that is needed to truly drive change.

Businesswoman, philanthropist, educator, and entertainer Revani “Rani” Puranik discusses the convergence of sustainability and work ethos as part of the Energy Transition. Photo courtesy of ranipuranik.com

Building a modern legacy of corporate and social responsibility

QUESTIONS + ANSWERS

With a mind for business and a passion for people, one woman leads the legacy her family trailblazed in corporate social responsibility.

Revani “Rani” Puranik, named successor for the CEO of Worldwide Oilfield Machine (“WOM”) and current Chair of the Puranik Foundation, continues the institutions her parents created with the same emphasis on mindfulness, sustainability, and opportunity for all.

In addition to extending the reach of WOM’s 3,000+ employees across 10 countries–and counting–Puranik shapes future leaders and innovators of energy through The Energy Project, a program launched in 2020 by the foundation to support young minds tackling environmental challenges for sustainable development across five sectors: Alternative Power Generation, Sustainable Consumption, Waste Management, Urban Design, and Water Sustainability.

In her upcoming book, Seven Letters to My Daughters, scheduled for release on May 24th, Puranik shares lessons in love, leadership, and legacy carved out of distinct seven-year periods of her life. And if inspiring the next generation and writing a book weren’t enough, Puranik has her eyes set on building a more holistic charter school in collaboration with Baylor College of Medicine.

With just a moment to spare before she launches a new initiative, Puranik met with EnergyCapitalHTX to discuss what Energy Transition looks like from her perspective.

EnergyCapitalHTX: You’ve had an interesting career, with one foot in something very altruistic, and the other in energy–which has a reputation for being… not so altruistic, let’s say. How did you get here?

Rani Puranik: First, I'll tell you that none of it, none of it, was planned.

The 1st 17 years of my life, I lived in Houston. I went to Lamar high school thinking I was going to be an engineer. But I was on a robust and dedicated journey singing and dancing, too. I was always very active and engaged in my heritage that way.

I went to India after I graduated from high school and stayed in my parents’ vacation home, which was next to a poverty-stricken area. All I thought was, “hey, how can I help?”

And that “how can I help?“ has always turned into larger projects than I ever imagined. Before long, I was running an after-school dance program for 60 kids. But it was more than dance. These girls needed a safe space to express themselves.

EC: How did you end up back in Houston?

RP: Well, life happens. I came to Houston on a one-way ticket with $200 in my pocket. My dad was still living here in Houston, running Worldwide Machine, so I volunteered in his company to keep busy.

Finally, in 2012, I realized I’m never going to be an engineer; I graduated from Rice with an MBA in finance in 2014. And then I just dedicated my entire life to WOM, my two girls, and the Puranik Foundation my mother started when I was in India.

EC: On one hand, you're encouraging innovation around building a sustainable environment with Puranik Foundation. And with WOM, you provide offshore equipment, services, and expertise. Do you see those concepts blending as part of the energy transition?

RP: One of the core principles of WOM is “stay curious.” We have something called the Idea Factory; sometimes we get ideas that are related to sustainability and alternative energies. The people that come up with these solutions and methods are deeply involved from start to finish as part of our research and development team.

We’ve currently got a patent on a frac valve that is so much healthier for the environment. There’s no disposal of grease, there’s much less use of water and chemicals injected because of the way our frac valve operates, and the pressures and temperatures it can sustain and withhold.

We’re also looking at design, revisiting processes and asking, “how can we make this more efficient?” How can we reduce not just the emissions, but the use of oils and liquids and fuels with process improvements and enhancements for the equipment that we're manufacturing?

EC: And for the foundation?

RP: What's important for me is to understand what energy is, why it's needed, and how we can tap into it from all sources.

If younger minds can think of things like some of the students in this year’s cohort of The Energy Project– things like using human movement to not just capture, but transform, energy–we're headed in the right direction.

EC: The energy transition is increasingly branded as a transition in mindset more than anything. Mindfulness is a core tenet of your foundation, is it a part of the nine core principles of WOM you mentioned?

RP: Absolutely. I've been called an empathetic leader because I listen. And I say the first part of listening is receiving. When you receive information, you're empowering yourself with knowledge and information being shared by someone else for you. And then you can offer a direction, a guide, or just a helping hand.

There's definitely a shift going on where people not just want to be heard, but there are leaders and organizations who understand the value and the importance of it. We can't do things on our own.

EC: You emphasize collaboration and human connectivity often, which are vital components of the sustainability economy. Can you elaborate on how your organizations embody these concepts?

RP: I made up the “earn to return” philosophy because I saw it in my own parents and I said, I've been given very valuable resources and I've been given a talent to connect people. And if together, that can create something beautiful to really enhance the abundance of resources and create stable pathways for people in their livelihoods, then that's my purpose and that's what I'm going to do.

And in the process, yeah, we make great sales, great profits. But then the profits have to be returned back to our local communities and our people and our kids so that they end up having stable livelihoods for their future. For me, that was always the driving force, and it still is.

But I'll tell you again, none of it was planned. None.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

3 organizations in Houston receive funding for DOE-backed programming

coming soon

A clean technology program backed by the Wells Fargo Foundation and co-administered by the United States Department of Energy's National Renewable Energy Laboratory has named three Houston organizations as recipients to an annual awards program.

The Wells Fargo Innovation Incubator, a $50 million program, announced its eighth cycle of IN2 Channel Partner Strategic Awards. The program is distributing $767,000 across 15 organizations within the Channel Partner network to create impactful workshops at the upcoming Camp Cleantech event in August at CSU Spur in Denver, Colorado.

Houston-based Rice Alliance Clean Energy Accelerator, as well as Activate Global Greentown Labs, which each have Houston locations, have been named among the awards recipients. The organizations will present workshops aimed at providing critical tools and insights for clean tech startups.

"We are celebrating this year's Strategic Award winners and looking forward to Camp Cleantech," says Robyn Luhning, chief sustainability officer at Wells Fargo, in a news release. "As the real economy demands more lower-carbon solutions, Wells Fargo continues to support the scaling of new solutions for a successful shift to a low-carbon economy."

Registration for the event opens May 1. A full itinerary is available online.

The selected participants represent IN²'s broader goals of diversity, equity, and inclusion, per the release.

"The significance of this year's awards goes beyond the recognition of innovation; it embodies a concerted effort to elevate collaboration and engagement across the board," adds Sarah Derdowski, IN² program director at NREL. "Through Camp Cleantech, we're setting a new standard in how we gather, inspire, and propel our community forward."

Around $435,000 of the funding will go toward select recipients who will receive additional follow-on funding to enhance and expand their workshop content and insights towards entrepreneurs in their local networks.

Global law firm names partner to build growing infrastructure, energy transition business

new hire

An international law firm has named a new partner in the Houston office to help build its growing infrastructure and energy transition capabilities

Weil, Gotshal & Manges announced infrastructure lawyer Jacqui Bogucki has returned to the firm.

"Jacqui will be an extremely valuable addition to our growing Houston team,” says Weil Executive Partner Barry Wolf in a news release. “Her significant infrastructure experience – including in the digital sector – and strong relationships with leading investment professionals will help to advance our fast-growing infrastructure and energy transition capabilities, and will be an immediate value-add to our clients globally.”

She will advise private equity sponsors and strategic clients on a wide range of corporate transactions. Her focus will include infrastructure, digital, technology, energy transition, and oil and gas sectors. Previously, Bogucki was a partner in the Mergers & Acquisitions practice at Simpson Thacher & Bartlett LLP. Her previous stint at Weil was from 2014 through 2018.

“I am so pleased to have the opportunity to return to Weil, where I began my legal career,” says Bogucki in a news release. “It is an incredibly exciting time to be joining the Firm as it further builds out its infrastructure and energy transition capabilities. I look forward to reconnecting with former colleagues and leveraging my experience to provide the highest quality service to our clients.”

Since 2023, notable energy partners Omar Samji, Chris Bennett, Cody Carper, and Irina Tsveklova have joined Weil in Houston – with Steven Lorch joining in New York just last month.

Tesla Q1 profit falls by more than half, but stock jumps amid production of cheaper vehicles

EV evolution

Tesla’s first-quarter net income plummeted 55 percent, but its stock price surged in after-hours trading Tuesday as the company said it would accelerate production of new, more affordable vehicles.

The Austin, Texas, company said it made $1.13 billion from January through March compared with $2.51 billion in the same period a year ago.

Investors and analysts were looking for some sign that Tesla will take steps to stem its stock's slide this year and grow sales. The company did that in a letter to investors Tuesday, saying that production of smaller, more affordable models will start ahead of previous guidance.

The smaller models, which apparently include the Model 2 small car that is expected to cost around $25,000, will use new generation vehicle underpinnings and some features of current models. The company said it would be built on the same manufacturing lines as its current products.

On a conference call with analysts, CEO Elon Musk said he expects production to start in the second half of next year “if not late this year.”

New factories or massive new production lines won't be needed for the new vehicles, Musk said.

“This update may result in achieving less cost reduction than previously expected but enables us to prudently grow our vehicle volumes in a more capex efficient manner during uncertain times,” the investor letter said.

But Musk gave few specifics on just what the new vehicles will be and whether they would be variants of current models. “I think we’ve said all we will on that front,” he told an analyst.

He did say that he expects Tesla to sell more vehicles this year than last year's 1.8 million.

The company also appears to be counting on a vehicle built to be a fully autonomous robotaxi as the catalyst for future earnings growth. Musk has said the robotaxi will be unveiled on Aug. 8.

Shares of Tesla rose 11 percent in trading after Tuesday’s closing bell, but they are down more than 40 percent this year. The S&P 500 index is up about 5 percent for the year.

Morningstar analyst Seth Goldstein said the company gave guidance about its future that was clearer than in the past, allaying investor concerns about production of the Model 2 and future growth. “I think for now we're likely to see the stock stabilize," he said. “I think Tesla provided an outlook today that can make investors feel more assured that management is righting the ship.”

But if sales fall again in the second quarter, the guidance will go out the window and concerns will return, he said.

Tesla reported that first-quarter revenue was $21.3 billion, down 9 percent from last year as worldwide sales dropped nearly 9 percent due to increased competition and slowing demand for electric vehicles.

Excluding one-time items such as stock-based compensation, Tesla made 45 cents per share, falling short of analyst estimates of 49 cents, according to FactSet.

The company’s gross profit margin, the percentage of revenue it gets to keep after expenses, fell once again to 17.4 percent. A year ago it was 19.3 percent, and it peaked at 29.1 percent in the first quarter of 2022.

Over the weekend, Tesla lopped $2,000 off the price of the Models Y, S and X in the U.S. and reportedly made cuts in other countries including China as global electric vehicle sales growth slowed. It also slashed the cost of “Full Self Driving” by one third to $8,000.

Tesla also announced last week that it would cut 10 percent of its 140,000 employees, and Chief Financial Officer Vaibhav Taneja said Tuesday the cuts will be across the board. Growth companies build up duplication that needs to be pruned like a tree to continue growing, he said.

Musk has been touting the robotaxi as a growth catalyst for Tesla since the hardware for it went on sale late in 2015.

In 2019, Musk promised a fleet of autonomous robotaxis by 2020 that would bring income to Tesla owners and make their car values appreciate. Instead, they've declined with price cuts, as the autonomous robotaxis have been delayed year after year while being tested by owners as the company gathers road data for its computers.

Neither Musk nor other Tesla executives on Tuesday's call would specify when they expect Tesla vehicles to drive themselves as well as humans do. Instead, Musk touted the latest version of Tesla’s autonomous driving software — which the company misleadingly brands as “Full Self Driving” despite the fact that it still requires human supervision — and said that “it’s only a matter of time before we exceed the reliability of humans, and not much time at that.”

It didn’t take the Tesla CEO long to begin expounding on the possibility of turning on self-driving capabilities for millions of Tesla vehicles at once, although again without estimating when that might actually occur. He went on to insist that “if somebody doesn’t believe that Tesla is going to solve autonomy, I think they should not be an investor in the company.”

Early last year the National Highway Traffic Safety Administration made Tesla recall its “Full Self-Driving” system because it can misbehave around intersections and doesn’t always follow speed limits. Tesla's less-sophisticated Autopilot system also was recalled to bolster its driver monitoring system.

Some experts don't think any system that relies solely on cameras like Tesla's can ever reach full autonomy.