energy storage

Houston researchers make headway on developing low-cost sodium-ion batteries

Rice's Atin Pramanik and a team in Pulickel Ajayan's lab shared new findings that offer a sustainable alternative to lithium batteries by enhancing sodium and potassium ion storage. Photo by Jeff Fitlow/Courtesy Rice University

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

Trending News

 

A View From HETI

Lydian Energy has secured financing for three battery storage system projects in Texas. Photo via Getty Images.

The Electricity Reliability Council of Texas’ grid will get a boost courtesy of Lydian Energy.

The D.C.-based company announced the successful financial close of its first institutional project financing totaling $233 million, backed by ING Group and KeyBank. The financing will support three battery energy storage system (BESS) projects in Texas.

Lydian is an independent power producer that specializes in the development, construction and operation of utility-scale solar and battery energy storage projects. The company reports that it plans to add 550 megawatts of energy—which can power approximately 412,500 homes—to the Texas grid administered by ERCOT.

“This financing marks an important step forward as we continue executing on our vision to scale transformative battery storage projects that meet the evolving energy needs of the communities we serve,” Emre Ersenkal, CEO at Lydian Energy, said in a news release.

The projects include:

Pintail 

  • Located in San Patricio county
  • 200 megawatts
  • Backed by ING

Crane

  • Located in Crane county
  • 200 megawatts
  • Backed by ING

Headcamp

  • Located in Pecos county
  • 150 megawatts
  • Backed by KeyBank

ING served as the lender for Pintail and Crane projects valued at a combined total of approximately $139 million.

KeyBank provided a $94 million financing package for the Headcamp project. KeyBanc Capital Markets also structured the financing package for Headcamp.

The three projects are being developed under Excelsior Energy Capital’s Fund II. Lydian’s current portfolio comprises 20 solar and storage projects, totaling 4.7 gigawatts of capacity.

“Our support of Lydian’s portfolio reflects ING’s focus on identifying strategic funding opportunities that align with the accelerating demand for sustainable power,” Sven Wellock, managing director and head of energy–renewables and power at ING, said in the release. “Battery storage plays a central role in supporting grid resilience, and we’re pleased to back a platform with strong fundamentals and a clear execution path.”

The facilities are expected to be placed in service by Q4 2025. Lydian is also pursuing additional financing for further projects, which are expected to commence construction by the end of 2025.

“These financings represent more than capital – they reflect the strong demand for reliable energy infrastructure in high-growth U.S. markets,” Anne Marie Denman, co-founding partner at Excelsior Energy Capital and chair of the board at Lydian Energy, added in the news release. “We’re proud to stand behind Lydian’s talented team as they deliver on the promise of battery storage with bankable projects, proven partners, and disciplined execution. In the midst of a lot of noise, these financings are a reminder that capital flows where infrastructure is satisfying fundamental needs of our society – in this case, the need for reliable, sustainable, domestic, and affordable energy.”

Trending News