Houston-based energy technology company SLB has rolled out two new tools for the energy transition. Photo via slb.com

Houston-based energy technology company SLB has rolled out two new tools — one for evaluating sites for carbon capture, utilization, and storage (CCUS) and the other for measuring methane levels.

SLB (Schlumberger) says the screening and ranking technology can help developers pinpoint ideal CCUS locations during the site selection process. The company says this tool helps simplify “a complex and multifaceted process.”

“CCUS is one of the most immediate opportunities to reduce emissions, but it must scale up by 100 to 200 times in less than three decades to have the expected impact on global net zero ambitions,” says Frederik Majkut, senior vice president of carbon solutions at SLB. “Ensuring that a storage site is both safer and economical is crucial for the speed, scale, and investment needed to meaningfully drive CCUS growth for a low-carbon energy ecosystem.”

The tool crunches data to identify the potential capabilities, economic viability, and risks of developing a CCUS project. The technology already has been used in Trinidad and Tobago, a two-island Caribbean country, to screen and rank possible CCUS sites.

“Using industry-leading and proprietary technologies and workflows, we provide a consistent and reliable method for screening and ranking potential storage sites, including an assessment of the risk, to ensure economic feasibility and long-term reliability,” SLB says on its website.

SLB unveiled the technology at the ADIPEC energy conference in the United Arab Emirates.

Prospective sites for CCUS projects include oil reservoirs, gas reservoirs, salt caves, and shale formations. More than 500 CCUS projects are in various stages of development around the world, according to the International Energy Agency.

Texas is poised to become a major player in the CCUS movement, with Houston set to serve as a hub for CCUS activity. Next March, Houston is hosting a major CCUS conference at the George R. Brown Convention Center. Sponsors of the event are the Society of Petroleum Engineers, American Association of Petroleum Geologists, and Society of Exploration Geophysicists.

The other tool released by SLB measures methane levels. Specifically, it’s a self-installed methane monitoring system that relies on sensors to detect, locate and assess emissions across oil and gas operations. Methane represents about half of the emissions from these operations.

“The technology automates continuous methane monitoring — eliminating the need for manual data collection during typical intermittent site visits, which only offers producers a small sample of their emissions,” says SLB.

The new joint venture, OneSubsea, is based in Oslo, Norway, and Houston. Photo courtesy

Houston company closes offshore JV deal to drive innovation, efficiency in subsea production

teaming up

A new joint venture with co-headquarters in Houston will explore opportunities in the market for subsea systems that tap into offshore energy reserves.

The business, called OneSubsea, is a joint venture of Houston-based energy technology company SLB (Schlumberger), Norwegian energy engineering company Aker Solutions, and Luxembourg-based energy engineering company Subsea7. SLB holds a 70 percent stake in OneSubsea, with Aker’s share at 20 percent and Subsea7’s share at 10 percent.

The financial foundation of the joint venture is a combination of $700.5 million in stock, cash, and a promissory note. In addition, SLB and Aker folded their subsea businesses into the joint venture, which was announced in 2022.

“As demand grows for cost-effective, efficient, and sustainable energy,” the joint venture says, “a large portion of the corresponding supply increase will come from offshore developments resulting in strong deepwater activity … and the need for innovative subsea solutions.”

OneSubsea is based in Oslo, Norway, and Houston.

As Aker explains, a subsea system “provides a way to produce hydrocarbons from areas not economically or easily developed by the use of an offshore platform.” The system’s ocean-floor components are connected to subsea pipelines, riser systems, and other equipment.

Hydrocarbons are the key components of oil and natural gas.

“The offshore market is demonstrating a sustained resurgence as operators across the world look to accelerate development cycle times and increase the productivity of their offshore assets,” says Olivier Le Peuch, CEO of SLB.

Mads Hjelmeland is the newly appointed CEO of OneSubsea, which employs about 11,000 people around the world.

“OneSubsea’s extensive technology portfolio and engineering expertise enable us to address future market trends and needs at a unique scale. In doing so, we aim to fulfil our purpose of expanding the frontiers of subsea to drive a sustainable energy future,” says Hjelmeland, who is based in Houston.

Hjelmeland’s tenure with the previous iteration of OneSubsea began in 2014. That’s a year after SLB and Cameron, a supplier of equipment, systems and services for the oil and gas industry, formed a joint venture known as OneSubsea to serve the subsea oil and gas market. SLB owned a 40 percent stake in OneSubsea, and Cameron owned a 60 percent stake.

To establish OneSubsea, Cameron contributed its subsea business, and SLB pitched in a $600 million payment to Cameron along with several business units.

In 2016, SLB acquired Cameron in a cash-and-stock deal initially valued at $14.8 billion. OneSubsea then became a subsidiary of SLB, and that subsidiary is now part of the newly reconfigured OneSubsea.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston university debuts new program to develop wind turbine workforce

future technicians

University of Houston-Downtown announced a new Wind Turbine Technician Certificate Program.

UHD’s goal with the new program is to address the global need for workers skilled in servicing, diagnosing, repairing and installing wind turbines and other associated equipment.

The program will allow students to learn at their own pace, and is supported seven days a week by tutorial and technical staff, and offers flexible payment options with a low initial registration fee.

Some courses can be purchased as students work through them.The total cost is $1,750 for the entire program.

The course will be delivered in partnership with George Brown College in Toronto. George Brown College is a leader in distance learning, and one program highlight will be its 3D interactive wind turbine simulator. The wind turbine simulator will have key features like real-time visualization, interactive operation, pre-built lab projects, and Pitch and Yaw Ladder Logic applications, which shows how Programmable Logic Controllers (PLCs) are used to provide automatic control of wind turbines.

“The programs we develop at George Brown College feature robust technical simulation software so we can reach different students, like those looking to diversify their skills and can’t attend full time because of family or work commitments,” Colin Simpson, dean of continuous learning, says in a news release. “Additionally, our partnership with University of Houston-Downtown allows us to extend our reach to help train the U.S. clean energy workforce.”

According to Global Wind Energy Council’s Global Wind Report 2023, over half a million new wind technicians will be needed by 2026 to service the expected capacity increases, as wind generation is expected to more than double by 2030. Texas produces 26 percent of all U.S. wind-sourced electricity.

“Wind energy is one of the fastest-growing energy sources in the world, and as the largest wind producer in the United States, there is a growing need for skilled technicians in Texas,” UHD President Loren J. Blanchard adds. “By partnering with George Brown College, we’re able to leverage a unique online program to develop a skilled workforce for the wind energy sector in the state and beyond.”

Power grid tech co. with Houston HQ raises $25M series B

money moves

A Norway-based provider of technology for power grids whose U.S. headquarters is in Houston has raised a $25 million series B round of funding.

The venture capital arm of Polish energy giant Orlen, Norwegian cleantech fund NRP Zero, and the Norway-based Steinsvik Family Office co-led Heimdall Energy's round. Existing investors, including Investinor, Ebony, Hafslund, Lyse, and Sarsia Seed, chipped in $8.5 million of the $25 million round.

“This funding gives us fuel to grow internationally, as we continue to build our organization with the best people and industry experts in the world,” Jørgen Festervoll, CEO of Heimdall, says in a news release.

Founded in 2016, Heimdall supplies software and sensors for monitoring overhead power lines. The company says its technology can generate up to 40 percent in additional transmission capacity from existing power lines.

Heimdall entered the U.S. market in 2023 with the opening of its Houston office after operating for several years in the European market.

“Heimdall Power has built itself a unique position as an enabler for the ongoing energy transition, with fast-increasing electricity demand and queues of renewables waiting to get connected,” says Marek Garniewski, president of Orlen’s VC fund.

Heimdall says it will put the fresh funding toward scaling up production and installation of its “magic ball” sphere-shaped sensors. In the U.S., these sensors help operators of power grids maximize the capacity of the aging power infrastructure.

“In the United States alone, there are over 500,000 miles of power lines — most of which have a far higher transmission capacity than grid operators have historically been able to realize. To increase capacity, many have launched large-scale and expensive infrastructure projects,” Heimdall says.

Now, the U.S. government has stepped in to ensure that utilities are gaining more capacity from the existing infrastructure, aiming to upgrade 100,000 miles of transmission lines over the next five years.

Heimdall's technology enables grid operators and utilities to boost transmission capacity without undertaking lengthy, costly infrastructure projects. Earlier this year, the company kicked off the largest grid optimization project in the U.S. with Minnesota-based Great River Energy.

———

This article originally ran on InnovationMap.