hi, tech

Houston-based corporation introduces two new energy transition tools

Houston-based energy technology company SLB has rolled out two new tools for the energy transition. Photo via slb.com

Houston-based energy technology company SLB has rolled out two new tools — one for evaluating sites for carbon capture, utilization, and storage (CCUS) and the other for measuring methane levels.

SLB (Schlumberger) says the screening and ranking technology can help developers pinpoint ideal CCUS locations during the site selection process. The company says this tool helps simplify “a complex and multifaceted process.”

“CCUS is one of the most immediate opportunities to reduce emissions, but it must scale up by 100 to 200 times in less than three decades to have the expected impact on global net zero ambitions,” says Frederik Majkut, senior vice president of carbon solutions at SLB. “Ensuring that a storage site is both safer and economical is crucial for the speed, scale, and investment needed to meaningfully drive CCUS growth for a low-carbon energy ecosystem.”

The tool crunches data to identify the potential capabilities, economic viability, and risks of developing a CCUS project. The technology already has been used in Trinidad and Tobago, a two-island Caribbean country, to screen and rank possible CCUS sites.

“Using industry-leading and proprietary technologies and workflows, we provide a consistent and reliable method for screening and ranking potential storage sites, including an assessment of the risk, to ensure economic feasibility and long-term reliability,” SLB says on its website.

SLB unveiled the technology at the ADIPEC energy conference in the United Arab Emirates.

Prospective sites for CCUS projects include oil reservoirs, gas reservoirs, salt caves, and shale formations. More than 500 CCUS projects are in various stages of development around the world, according to the International Energy Agency.

Texas is poised to become a major player in the CCUS movement, with Houston set to serve as a hub for CCUS activity. Next March, Houston is hosting a major CCUS conference at the George R. Brown Convention Center. Sponsors of the event are the Society of Petroleum Engineers, American Association of Petroleum Geologists, and Society of Exploration Geophysicists.

The other tool released by SLB measures methane levels. Specifically, it’s a self-installed methane monitoring system that relies on sensors to detect, locate and assess emissions across oil and gas operations. Methane represents about half of the emissions from these operations.

“The technology automates continuous methane monitoring — eliminating the need for manual data collection during typical intermittent site visits, which only offers producers a small sample of their emissions,” says SLB.

Trending News

A View From HETI

Mars Materials has successfully turned its CO2-derived product into a high-quality raw material for producing carbon fiber. Photo via LinkedIn.

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

Trending News