teaming up

Houston company closes offshore JV deal to drive innovation, efficiency in subsea production

The new joint venture, OneSubsea, is based in Oslo, Norway, and Houston. Photo courtesy

A new joint venture with co-headquarters in Houston will explore opportunities in the market for subsea systems that tap into offshore energy reserves.

The business, called OneSubsea, is a joint venture of Houston-based energy technology company SLB (Schlumberger), Norwegian energy engineering company Aker Solutions, and Luxembourg-based energy engineering company Subsea7. SLB holds a 70 percent stake in OneSubsea, with Aker’s share at 20 percent and Subsea7’s share at 10 percent.

The financial foundation of the joint venture is a combination of $700.5 million in stock, cash, and a promissory note. In addition, SLB and Aker folded their subsea businesses into the joint venture, which was announced in 2022.

“As demand grows for cost-effective, efficient, and sustainable energy,” the joint venture says, “a large portion of the corresponding supply increase will come from offshore developments resulting in strong deepwater activity … and the need for innovative subsea solutions.”

OneSubsea is based in Oslo, Norway, and Houston.

As Aker explains, a subsea system “provides a way to produce hydrocarbons from areas not economically or easily developed by the use of an offshore platform.” The system’s ocean-floor components are connected to subsea pipelines, riser systems, and other equipment.

Hydrocarbons are the key components of oil and natural gas.

“The offshore market is demonstrating a sustained resurgence as operators across the world look to accelerate development cycle times and increase the productivity of their offshore assets,” says Olivier Le Peuch, CEO of SLB.

Mads Hjelmeland is the newly appointed CEO of OneSubsea, which employs about 11,000 people around the world.

“OneSubsea’s extensive technology portfolio and engineering expertise enable us to address future market trends and needs at a unique scale. In doing so, we aim to fulfil our purpose of expanding the frontiers of subsea to drive a sustainable energy future,” says Hjelmeland, who is based in Houston.

Hjelmeland’s tenure with the previous iteration of OneSubsea began in 2014. That’s a year after SLB and Cameron, a supplier of equipment, systems and services for the oil and gas industry, formed a joint venture known as OneSubsea to serve the subsea oil and gas market. SLB owned a 40 percent stake in OneSubsea, and Cameron owned a 60 percent stake.

To establish OneSubsea, Cameron contributed its subsea business, and SLB pitched in a $600 million payment to Cameron along with several business units.

In 2016, SLB acquired Cameron in a cash-and-stock deal initially valued at $14.8 billion. OneSubsea then became a subsidiary of SLB, and that subsidiary is now part of the newly reconfigured OneSubsea.

Trending News

A View From HETI

Greenhouse gases continue to rise, and the challenges they pose are not going away. Photo via Getty Images

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

Trending News