A new joint venture will work on four projects supplying 5 gigawatts of power from combined-cycle power plants for the ERCOT and PJM Interconnection grids. Photo via Getty Images.

Houston-based power provider NRG Energy Inc. has formed a joint venture with two other companies to meet escalating demand for electricity to fuel the rise of data centers and the evolution of generative AI.

NRG’s partners in the joint venture are GE Vernova, a provider of renewable energy equipment and services, and TIC – The Industrial Co., a subsidiary of construction and engineering company Kiewit.

“The growing demand for electricity in part due to GenAI and the buildup of data centers means we need to form new, innovative partnerships to quickly increase America’s dispatchable generation,” Robert Gaudette, head of NRG Business and Wholesale Operations, said in a news release. “Working together, these three industry leaders are committed to executing with speed and excellence to meet our customers’ generation needs.”

Initially, the joint venture will work on four projects supplying 5 gigawatts of power from combined-cycle power plants, which uses a combination of natural gas and steam turbines that produce additional electricity from natural gas waste. Electricity from these projects will be produced for power grids operated by the Electric Reliability Council of Texas (ERCOT) and PJM Interconnection. The projects are scheduled to come online from 2029 through 2032.

The joint venture says the model it’s developing for these four projects is “replicable and scalable,” with the potential for expansion across the U.S.

The company is also developing a new 721-megawatt natural gas combined-cycle unit at its Cedar Bayou plant in Baytown, Texas. Read more here.

SLB's OneSubsea will provide seawater injection systems to boost recovery and cut emissions at Petrobras' Búzios field. Photo courtesy of SLB

SLB awarded Petrobras contract for subsea seawater injection systems in Brazil

JV deal

Houston energy technology company SLB announced a contract award by Petrobras to its OneSubsea joint venture for two subsea raw seawater injection systems to increase recovery from the prolific Búzios field in offshore Brazil.

The subsea RWI systems will work to increase the production of floating production storage and offloading (Petrobras FPSO) vessels that are currently bottlenecked in their water injection capacities.The RWI systems, once operational, can reduce greenhouse gas emissions per barrel of oil.

“As deepwater basins mature, we see more and more secondary recovery opportunities emerging,” Mads Hjelmeland, CEO of SLB OneSubsea, says in a news release. “Subsea raw seawater injection is a well-proven application with a strong business case that we think should become mainstream. By placing the system directly on the seabed, we free up space and reduce fuel needs for the FPSOs as well as lessen the power needs for the injection systems. It’s a win-win for Petrobras, and one that we are very excited about.”

SLB OneSubsea works to “optimize oil and gas production, decarbonize subsea operations, and unlock the large potential of subsea solutions to accelerate the energy transition,” per to the company.

SLB OneSubsea is contracted to provide two complete subsea RWI systems to support Petrobras’ FPSOs P-74 and P-75. They will consist of a subsea seawater injection pump, umbilical system and topside variable speed drive. In addition,the team will also provide technical support using AI-enabled Subsea Live services, which includes condition monitoring and access to domain experts.

“This contract will consolidate our solid local content presence in the country, contributed by the largest manufacturing plants and state-of-the-art subsea service facilities in Brazil,” Hjelmeland continues.

One Equity Partners announced the acquisition of EthosEnergy, which focuses on rotating equipment services for power generation, energy, industrial, and aerospace and defense industry.

Houston energy equipment service provider acquired by New York PE firm

changing hands

Houston-based energy equipment service provider EthosEnergy has been acquired by a New York private equity firm.

One Equity Partners announced the acquisition of EthosEnergy, which focuses on rotating equipment services for power generation, energy, industrial, and aerospace and defense industry. The terms of the deal were not disclosed.

Formed in 2014 as a joint venture between John Wood Group and Siemens Energy AG, EthosEnergy, which has 3,600 employees across 23 global sites, provides aftermarket maintenance, repair, and overhaul, or MRO, services as well as outsourced operations and maintenance for power generation and industrial customers operating industrial gas turbines and other similar equipment.

“As we seek to enhance and grow our operations, we are pleased to have OEP backing us as a partner,” EthosEnergy CEO Ana Amicarella says in a news release. “OEP’s longstanding and deep industrial sector expertise will support EthosEnergy as we serve growing needs in a critical industry.”

A middle market PE firm, OEP focuses on the industrial, healthcare, and technology sectors in North America and Europe. The firm was founded in 2001 and spun out of JP Morgan in 2015. It has offices in New York, Chicago, Frankfurt, and Amsterdam.

“EthosEnergy is uniquely positioned to meet the growing maintenance needs of an aging turbine fleet," Ante Kusurin, partner at One Equity Partners, adds. "As energy demand rises, these turbines are being pushed beyond their initial design parameters, creating significant opportunities for EthosEnergy’s flexible, cost-effective services.”

Last year, Amicarella joined EnergyCapital for an interview where she discussed the company's commitment to the energy transition.

"Our focus on sustainability is the right thing to do for our employees, for our customers, and for our communities," she said in the interview.

SLB now owns 80 percent of Aker Carbon Capture, with Aker retaining a 20 percent stake. Photo via Getty Images

SLB seals the deal with Norwegian company on carbon capture JV

team work

Houston-based energy technology company SLB has finalized its purchase of a majority stake in Norway’s Aker Carbon Capture, a provider of industrial-scale carbon capture and sequestration (CCS) technology.

SLB now owns 80 percent of Aker Carbon Capture, with Aker retaining a 20 percent stake.

In March 2024, SLB said it would pay roughly $388 million for the 80 percent stake in Aker and contribute its carbon capture business to the joint venture. In addition, SLB said it might pay close to $130 million over the next three years if the joint venture meets certain performance benchmarks.

“There is no credible pathway toward net zero without deploying carbon capture and sequestration (CCS) at scale,” Gavin Rennick, president of SLB’s New Energy business, says in a news release. “In the next few decades, many industries that are crucial to our modern world must rapidly adopt CCS to decarbonize. Through the joint venture, we are excited to accelerate disruptive carbon capture technologies globally.”

The joint venture combines Aker’s Advanced Carbon Capture technologies — including Just Catch and Big Catch modular technology for midsize and large facilities, and Just Catch Offshore for offshore gas turbines — with SLB’s technology portfolio.

“There is no business as usual in the push toward net zero — we will accelerate decarbonization today and commercialize innovative technologies for the future,” says Egil Fagerland, newly appointed CEO of the Norway-based joint venture.

Last fall, SLB and Aker Solutions teamed up with Luxembourg-based energy engineering company Subsea7 to create OneSubsea. SLB holds a 70 percent stake in OneSubsea, with Aker’s share at 20 percent and Subsea7’s share at 10 percent.

TerraLithium's direct lithium extraction technology extracts and commercially sustainably produces lithium compounds from geothermal brine. Photo via Getty Images

Oxy enters new partnership to demonstrate, deploy promising lithium technology

teaming up

Houston-based Oxy has opted into a joint venture to deploy lithium technology from its subsidiary.

The JV is with BHE Renewables, a wholly-owned subsidiary of Berkshire Hathaway Energy headquartered in Des Moines, Iowa. The partnership will demonstrate and deploy direct lithium extraction technology from TerraLithium, a wholly-owned subsidiary of Oxy.

TerraLithium's DLE technology extracts and commercially sustainably produces lithium compounds from geothermal brine. Lithium has been a vital part of batteries for electric vehicles, and energy grid storage, which both areas have seen continued demand. The battery lithium demand is expected to increase tenfold over 2020–2030 according to the International Renewable Energy Agency

“Creating a secure, reliable and domestic supply of high-purity lithium products to help meet growing global lithium demand is essential for the energy transition,” President and General Manager of TerraLithium Jeff Alvare says in a news release. “The partnership with BHE Renewables will enable the joint venture to accelerate the development of our Direct Lithium Extraction and associated technologies and advance them toward commercial lithium production.”

BHE Renewables currently operates 10 geothermal power plants in California’s Imperial Valley. The location processes 50,000 gallons of lithium-rich brine per minute to produce 345 megawatts of clean energy. The joint venture aims for an environmentally safe way to demonstrate the feasibility of using the TerraLithium DLE technology to produce lithium, which began at BHE Renewables’ Imperial Valley geothermal facility. The companies also plan to license the technology and develop commercial lithium production facilities to expand outside the Imperial Valley area.

“By leveraging Occidental’s expertise in managing and processing brine in our oil and gas and chemicals businesses, combined with BHE Renewables’ deep knowledge in geothermal operations, we are uniquely positioned to advance a more sustainable form of lithium production,” Richard Jackson, president of U.S. Onshore Resources and Carbon Management and Operations at Oxy adds. “We look forward to working with BHE Renewables to demonstrate how DLE technology can produce a critical mineral that society needs to further net zero goals.”

Under this deal, the joint venture, RPC Power, will build power generation and storage assets for the sale of energy and related services to ERCOT. Photo via conduitpower.co

Houston company expands JV to build new power generation, storage assets

team work

Houston-based Conduit Power is broadening the scope of its joint venture with Oklahoma City-based Riley Exploration Permian.

Under this deal, the joint venture, RPC Power, will build power generation and storage assets for the sale of energy and related services to the Electric Reliability Council of Texas (ERCOT), which operates the power grid for the bulk of Texas.

RPC Power, established in March 2023, owns and operates power generation assets that use Riley Permian’s natural gas to power its oilfield operations in Yoakum County, located in West Texas.

The expanded relationship will enable RPC Power to sell power and related services to ERCOT, with plans for 100 megawatts of natural gas-fueled generation and battery energy storage systems across facilities in West Texas. The facilities are expected to start commercial operations in 2025.

In conjunction with the expanded scope, Riley Permian bumped up its stake in RPC Power from 35 percent to 50 percent. Furthermore, it plans to sell up to 10 million cubic feet per day of natural gas to RPC Power as feedstock supply for the new generation facilities.

"Our JV expansion at RPC Power represents a significant milestone for our company, and we are proud to build upon our successful partnership with Riley Permian,” Travis Windholz, managing director of Conduit, says in a news release.

Conduit, a portfolio company of private equity firm Grey Rock Investment Partners, designs, builds, and operates distributed power generation systems.

Riley Exploration Permian specializes in the exploration, development, and production of oil and natural gas reserves, primarily within the Permian Basin.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

ExxonMobil, Rice launch sustainability initiative with first project underway

power partners

Houston-based ExxonMobil and Rice University announced a master research agreement this week to collaborate on research initiatives on sustainable energy efforts and solutions. The agreement includes one project that’s underway and more that are expected to launch this year.

“Our commitment to science and engineering, combined with Rice’s exceptional resources for research and innovation, will drive solutions to help meet growing energy demand,” Mike Zamora, president of ExxonMobil Technology and Engineering Co., said in a news release. “We’re thrilled to work together with Rice.”

Rice and Exxon will aim to develop “systematic and comprehensive solutions” to support the global energy transition, according to Rice. The university will pull from the university’s prowess in materials science, polymers and catalysts, high-performance computing and applied mathematics.

“Our agreement with ExxonMobil highlights Rice’s ability to bring together diverse expertise to create lasting solutions,” Ramamoorthy Ramesh, executive vice president for research at Rice, said in the release. “This collaboration allows us to tackle key challenges in energy, water and resource sustainability by harnessing the power of an interdisciplinary systems approach.”

The first research project under the agreement focuses on developing advanced technologies to treat desalinated produced water from oil and gas operations for potential reuse. It's being led by Qilin Li, professor of civil and environmental engineering at Rice and co-director of the Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT) Center.

Li’s research employs electrochemical advanced oxidation processes to remove harmful organic compounds and ammonia-nitrogen, aiming to make the water safe for applications such as agriculture, wildlife and industrial processes. Additionally, the project explores recovering ammonia and producing hydrogen, contributing to sustainable resource management.

Additional projects under the agreement with Exxon are set to launch in the coming months and years, according to Rice.

Houston geothermal company secures major power purchase agreement with Shell

under contract

Beginning in 2026, Shell will be able to apply 31 megawatts of 24/7 carbon-free geothermal power to its customers thanks to a new 15-year power purchase agreement with Houston next-gen geothermal development company Fervo Energy.

“This agreement demonstrates that Fervo is stepping up to meet the moment,” Dawn Owens, VP, Head of Development & Commercial Markets at Fervo, said in a news release.

Shell will become the first offtaker to receive electrons from Fervo's flagship geothermal development in Beaver County, Utah’s Phase I of Cape Station. Cape Station is currently one of the world’s largest enhanced geothermal systems (EGS) developments, and the station will begin to deliver electricity to the grid in 2026.

Cape Station will increase from 400 MW to 500 MW, which is considered by the company a major accomplishment due to recent breakthroughs in Fervo’s field development strategy and well design. Fervo is now able to generate more megawatts per well by optimizing well spacing using fiber optic sensing, increasing casing diameter and implementing staggered bench development. This can allow for a 100 MW capacity increase without the need for additional drilling, according to the company.

With the addition of the new Shell deal, all 500 MW of capacity from Fervo’s Cape Station are now fully contracted. The deal also includes existing agreements, like Fervo’s PPAs with Southern California Edison and an expanded deal with Clean Power Alliance that adds 18 MW of carbon-free geothermal energy to the company’s existing PPA with Fervo.

“As customers seek out 24/7 carbon-free energy, geothermal is clearly an essential part of the solution,” Owens said in the release.

Houston expert: From EVs to F-35s — materials that power our future are in short supply

guest column

If you’re reading this on a phone, driving an EV, flying in a plane, or relying on the power grid to keep your lights on, you’re benefiting from critical minerals. These are the building blocks of modern life. Things like copper, lithium, nickel, rare earth elements, and titanium, they’re found in everything from smartphones to solar panels to F-35 fighter jets.

In short: no critical minerals, no modern economy.

These minerals aren’t just useful, they’re essential. And in the U.S., we don’t produce enough of them. Worse, we’re heavily dependent on countries that don’t always have our best interests at heart. That’s a serious vulnerability, and we’ve done far too little to fix it.

Where We Use Them and Why We’re Behind

Let’s start with where these minerals show up in daily American life:

  • Electric vehicles need lithium, cobalt, and nickel for batteries.
  • Wind turbines and solar panels rely on rare earths and specialty metals.
  • Defense systems require titanium, beryllium, and rare earths.
  • Basic infrastructure like power lines and buildings depend on copper and aluminum.

You’d think that something so central to the economy, and to national security, would be treated as a top priority. But we’ve let production and processing capabilities fall behind at home, and now we’re playing catch-up.

The Reality Check: We’re Not in Control

Right now, the U.S. is deeply reliant on foreign sources for critical minerals, especially China. And it’s not just about mining. China dominates processing and refining too, which means they control critical links in the supply chain.

Gabriel Collins and Michelle Michot Foss from the Baker Institute lay all this out in a recent report that every policymaker should read. Their argument is blunt: if we don’t get a handle on this, we’re in trouble, both economically and militarily.

China has already imposed export controls on key rare earth elements like dysprosium and terbium which are critical for magnets, batteries, and defense technologies, in direct response to new U.S. tariffs. This kind of tit-for-tat escalation exposes just how much leverage we’ve handed over. If this continues, American manufacturers could face serious material shortages, higher costs, and stalled projects.

We’ve seen this movie before, in the pandemic, when supply chains broke and countries scrambled for basics like PPE and semiconductors. We should’ve learned our lesson.

We Do Have a Stockpile, But We Need a Strategy

Unlike during the Cold War, the U.S. no longer maintains comprehensive strategic reserves across the board, but we do have stockpiles managed by the Defense Logistics Agency. The real issue isn’t absence, it’s strategy: what to stockpile, how much, and under what assumptions.

Collins and Michot Foss argue for a more robust and better-targeted approach. That could mean aiming for 12 to 18 months worth of demand for both civilian and defense applications. Achieving that will require:

  • Smarter government purchasing and long-term contracts
  • Strategic deals with allies (e.g., swapping titanium for artillery shells with Ukraine)
  • Financing mechanisms to help companies hold critical inventory for emergency use

It’s not cheap, but it’s cheaper than scrambling mid-crisis when supplies are suddenly cut off.

The Case for Advanced Materials: Substitutes That Work Today

One powerful but often overlooked solution is advanced materials, which can reduce our dependence on vulnerable mineral supply chains altogether.

Take carbon nanotube (CNT) fibers, a cutting-edge material invented at Rice University. CNTs are lighter, stronger, and more conductive than copper. And unlike some future tech, this isn’t hypothetical: we could substitute CNTs for copper wire harnesses in electrical systems today.

As Michot Foss explained on the Energy Forum podcast:

“You can substitute copper and steel and aluminum with carbon nanotube fibers and help offset some of those trade-offs and get performance enhancements as well… If you take carbon nanotube fibers and you put those into a wire harness… you're going to be reducing the weight of that wire harness versus a metal wire harness like we already use. And you're going to be getting the same benefit in terms of electrical conductivity, but more strength to allow the vehicle, the application, the aircraft, to perform better.”

By accelerating R&D and deployment of CNTs and similar substitutes, we can reduce pressure on strained mineral supply chains, lower emissions, and open the door to more secure and sustainable manufacturing.

We Have Tools. We Need to Use Them.

The report offers a long list of solutions. Some are familiar, like tax incentives, public-private partnerships, and fast-tracked permits. Others draw on historical precedent, like “preclusive purchasing,” a WWII tactic where the U.S. bought up materials just so enemies couldn’t.

We also need to get creative:

  • Repurpose existing industrial sites into mineral hubs
  • Speed up R&D for substitutes and recycling
  • Buy out risky foreign-owned assets in friendlier countries

Permitting remains one of the biggest hurdles. In the U.S., it can take 7 to 10 years to approve a new critical minerals project, a timeline that doesn’t match the urgency of our strategic needs. As Collins said on the Energy Forum podcast:

“Time kills deals... That’s why it’s more attractive generally to do these projects elsewhere.”

That’s the reality we’re up against. Long approval windows discourage investment and drive developers to friendlier jurisdictions abroad. One encouraging step is the use of the Defense Production Act to fast-track permitting under national security grounds. That kind of shift, treating permitting as a strategic imperative, must become the norm, not the exception.

It’s Time to Redefine Sustainability

Sustainability has traditionally focused on cutting carbon emissions. That’s still crucial, but we need a broader definition. Today, energy and materials security are just as important.

Countries are now weighing cost and reliability alongside emissions goals. We're also seeing renewed attention to recycling, biodiversity, and supply chain resilience.

Net-zero by 2050 is still a target. But reality is forcing a more nuanced discussion:

  • What level of warming is politically and economically sustainable?
  • What tradeoffs are we willing to make to ensure energy access and affordability?

The bottom line: we can’t build a clean energy future without secure access to materials. Recycling helps, but it’s not enough. We'll need new mines, new tech, and a more flexible definition of sustainability.

My Take: We’re Running Out of Time

This isn’t just a policy debate. It’s a test of whether we’ve learned anything from the past few years of disruption. We’re not facing an open war, but the risks are real and growing.

We need to treat critical minerals like what they are: a strategic necessity. That means rebuilding stockpiles, reshoring processing, tightening alliances, and accelerating permitting across the board.

It won’t be easy. But if we wait until a real crisis hits, it’ll be too late.

———

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn on April 11, 2025.