team work

Houston company expands JV to build new power generation, storage assets

Under this deal, the joint venture, RPC Power, will build power generation and storage assets for the sale of energy and related services to ERCOT. Photo via conduitpower.co

Houston-based Conduit Power is broadening the scope of its joint venture with Oklahoma City-based Riley Exploration Permian.

Under this deal, the joint venture, RPC Power, will build power generation and storage assets for the sale of energy and related services to the Electric Reliability Council of Texas (ERCOT), which operates the power grid for the bulk of Texas.

RPC Power, established in March 2023, owns and operates power generation assets that use Riley Permian’s natural gas to power its oilfield operations in Yoakum County, located in West Texas.

The expanded relationship will enable RPC Power to sell power and related services to ERCOT, with plans for 100 megawatts of natural gas-fueled generation and battery energy storage systems across facilities in West Texas. The facilities are expected to start commercial operations in 2025.

In conjunction with the expanded scope, Riley Permian bumped up its stake in RPC Power from 35 percent to 50 percent. Furthermore, it plans to sell up to 10 million cubic feet per day of natural gas to RPC Power as feedstock supply for the new generation facilities.

"Our JV expansion at RPC Power represents a significant milestone for our company, and we are proud to build upon our successful partnership with Riley Permian,” Travis Windholz, managing director of Conduit, says in a news release.

Conduit, a portfolio company of private equity firm Grey Rock Investment Partners, designs, builds, and operates distributed power generation systems.

Riley Exploration Permian specializes in the exploration, development, and production of oil and natural gas reserves, primarily within the Permian Basin.

Trending News

A View From HETI

A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants.

Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team released two significant publications that made significant strides relating to carbon capture processes. The first, published in Nature Communications, introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process. Another, featured on the cover of ES&T Engineering, demonstrated a vanadium redox flow system capable of both capturing carbon and storing renewable energy.

“These publications reflect our group’s commitment to fundamental electrochemical innovation and real-world applicability,” Rahimi said in a news release. “From membraneless systems to scalable flow systems, we’re charting pathways to decarbonize hard-to-abate sectors and support the transition to a low-carbon economy.”

According to the researchers, the “A Membraneless Electrochemically Mediated Amine Regeneration for Carbon Capture” research paper marked the beginning of the team’s first focus. The research examined the replacement of costly ion-exchange membranes with gas diffusion electrodes. They found that the membranes were the most expensive part of the system, and they were also a major cause of performance issues and high maintenance costs.

The researchers achieved more than 90 percent CO2 removal (nearly 50 percent more than traditional approaches) by engineering the gas diffusion electrodes. According to PhD student and co-author of the paper Ahmad Hassan, the capture costs approximately $70 per metric ton of CO2, which is competitive with other innovative scrubbing techniques.

“By removing the membrane and the associated hardware, we’ve streamlined the EMAR workflow and dramatically cut energy use,” Hassan said in the news release. “This opens the door to retrofitting existing industrial exhaust systems with a compact, low-cost carbon capture module.”

The second breakthrough, published by PhD student Mohsen Afshari, displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge. The results suggested that the technology could potentially provide carbon removal and grid balancing when used with intermittent renewables, such as solar or wind power.

“Integrating carbon capture directly into a redox flow battery lets us tackle two challenges in one device,” Afshari said in the release. “Our front-cover feature highlights its potential to smooth out renewable generation while sequestering CO2.”

Trending News