teaming up

Oxy enters new partnership to demonstrate, deploy promising lithium technology

TerraLithium's direct lithium extraction technology extracts and commercially sustainably produces lithium compounds from geothermal brine. Photo via Getty Images

Houston-based Oxy has opted into a joint venture to deploy lithium technology from its subsidiary.

The JV is with BHE Renewables, a wholly-owned subsidiary of Berkshire Hathaway Energy headquartered in Des Moines, Iowa. The partnership will demonstrate and deploy direct lithium extraction technology from TerraLithium, a wholly-owned subsidiary of Oxy.

TerraLithium's DLE technology extracts and commercially sustainably produces lithium compounds from geothermal brine. Lithium has been a vital part of batteries for electric vehicles, and energy grid storage, which both areas have seen continued demand. The battery lithium demand is expected to increase tenfold over 2020–2030 according to the International Renewable Energy Agency

“Creating a secure, reliable and domestic supply of high-purity lithium products to help meet growing global lithium demand is essential for the energy transition,” President and General Manager of TerraLithium Jeff Alvare says in a news release. “The partnership with BHE Renewables will enable the joint venture to accelerate the development of our Direct Lithium Extraction and associated technologies and advance them toward commercial lithium production.”

BHE Renewables currently operates 10 geothermal power plants in California’s Imperial Valley. The location processes 50,000 gallons of lithium-rich brine per minute to produce 345 megawatts of clean energy. The joint venture aims for an environmentally safe way to demonstrate the feasibility of using the TerraLithium DLE technology to produce lithium, which began at BHE Renewables’ Imperial Valley geothermal facility. The companies also plan to license the technology and develop commercial lithium production facilities to expand outside the Imperial Valley area.

“By leveraging Occidental’s expertise in managing and processing brine in our oil and gas and chemicals businesses, combined with BHE Renewables’ deep knowledge in geothermal operations, we are uniquely positioned to advance a more sustainable form of lithium production,” Richard Jackson, president of U.S. Onshore Resources and Carbon Management and Operations at Oxy adds. “We look forward to working with BHE Renewables to demonstrate how DLE technology can produce a critical mineral that society needs to further net zero goals.”

Trending News

A View From HETI

Ahmad Elgazzar, Haotian Wang and Shaoyun Hao were members of a Rice University team that recently published findings on how acid bubbling can improve CO2 reduction systems. Photo courtesy Rice.

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy. Read more here.

Trending News