teaming up

Oxy enters new partnership to demonstrate, deploy promising lithium technology

TerraLithium's direct lithium extraction technology extracts and commercially sustainably produces lithium compounds from geothermal brine. Photo via Getty Images

Houston-based Oxy has opted into a joint venture to deploy lithium technology from its subsidiary.

The JV is with BHE Renewables, a wholly-owned subsidiary of Berkshire Hathaway Energy headquartered in Des Moines, Iowa. The partnership will demonstrate and deploy direct lithium extraction technology from TerraLithium, a wholly-owned subsidiary of Oxy.

TerraLithium's DLE technology extracts and commercially sustainably produces lithium compounds from geothermal brine. Lithium has been a vital part of batteries for electric vehicles, and energy grid storage, which both areas have seen continued demand. The battery lithium demand is expected to increase tenfold over 2020–2030 according to the International Renewable Energy Agency

“Creating a secure, reliable and domestic supply of high-purity lithium products to help meet growing global lithium demand is essential for the energy transition,” President and General Manager of TerraLithium Jeff Alvare says in a news release. “The partnership with BHE Renewables will enable the joint venture to accelerate the development of our Direct Lithium Extraction and associated technologies and advance them toward commercial lithium production.”

BHE Renewables currently operates 10 geothermal power plants in California’s Imperial Valley. The location processes 50,000 gallons of lithium-rich brine per minute to produce 345 megawatts of clean energy. The joint venture aims for an environmentally safe way to demonstrate the feasibility of using the TerraLithium DLE technology to produce lithium, which began at BHE Renewables’ Imperial Valley geothermal facility. The companies also plan to license the technology and develop commercial lithium production facilities to expand outside the Imperial Valley area.

“By leveraging Occidental’s expertise in managing and processing brine in our oil and gas and chemicals businesses, combined with BHE Renewables’ deep knowledge in geothermal operations, we are uniquely positioned to advance a more sustainable form of lithium production,” Richard Jackson, president of U.S. Onshore Resources and Carbon Management and Operations at Oxy adds. “We look forward to working with BHE Renewables to demonstrate how DLE technology can produce a critical mineral that society needs to further net zero goals.”

Trending News

A View From HETI

A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants.

Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team released two significant publications that made significant strides relating to carbon capture processes. The first, published in Nature Communications, introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process. Another, featured on the cover of ES&T Engineering, demonstrated a vanadium redox flow system capable of both capturing carbon and storing renewable energy.

“These publications reflect our group’s commitment to fundamental electrochemical innovation and real-world applicability,” Rahimi said in a news release. “From membraneless systems to scalable flow systems, we’re charting pathways to decarbonize hard-to-abate sectors and support the transition to a low-carbon economy.”

According to the researchers, the “A Membraneless Electrochemically Mediated Amine Regeneration for Carbon Capture” research paper marked the beginning of the team’s first focus. The research examined the replacement of costly ion-exchange membranes with gas diffusion electrodes. They found that the membranes were the most expensive part of the system, and they were also a major cause of performance issues and high maintenance costs.

The researchers achieved more than 90 percent CO2 removal (nearly 50 percent more than traditional approaches) by engineering the gas diffusion electrodes. According to PhD student and co-author of the paper Ahmad Hassan, the capture costs approximately $70 per metric ton of CO2, which is competitive with other innovative scrubbing techniques.

“By removing the membrane and the associated hardware, we’ve streamlined the EMAR workflow and dramatically cut energy use,” Hassan said in the news release. “This opens the door to retrofitting existing industrial exhaust systems with a compact, low-cost carbon capture module.”

The second breakthrough, published by PhD student Mohsen Afshari, displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge. The results suggested that the technology could potentially provide carbon removal and grid balancing when used with intermittent renewables, such as solar or wind power.

“Integrating carbon capture directly into a redox flow battery lets us tackle two challenges in one device,” Afshari said in the release. “Our front-cover feature highlights its potential to smooth out renewable generation while sequestering CO2.”

Trending News