The grants will fund a total of 25 projects in 14 states, including Texas. Photo via Getty Images

The Biden administration is awarding over $3 billion to U.S. companies to boost domestic production of advanced batteries and other materials used for electric vehicles, part of a continuing push to reduce China’s global dominance in battery production for EVs and other electronics.

The grants will fund a total of 25 projects in 14 states, including Texas, as well as Ohio, South Carolina, Michigan, North Carolina, and Louisiana.

The grants announced Friday mark the second round of EV battery funding under the bipartisan infrastructure law approved in 2021. An earlier round allocated $1.8 billion for 14 projects that are ongoing. The totals are down from amounts officials announced in October 2022 and reflect a number of projects that were withdrawn or rejected by U.S. officials during sometimes lengthy negotiations.

The money is part of a larger effort by President Joe Biden and Vice President Kamala Harris to boost production and sales of electric vehicles as a key element of their strategy to slow climate change and build up U.S. manufacturing. Companies receiving awards process lithium, graphite or other battery materials, or manufacture components used in EV batteries.

“Today’s awards move us closer to achieving the administration’s goal of building an end-to-end supply chain for batteries and critical minerals here in America, from mining to processing to manufacturing and recycling, which is vital to reduce China’s dominance of this critical sector,'' White House economic adviser Lael Brainard said.

The Biden-Harris administration is "committed to making batteries in the United States that are going to be vital for powering our grid, our homes and businesses and America’s iconic auto industry,'' Brainard told reporters Thursday during a White House call.

The awards announced Friday bring to nearly $35 billion total U.S. investments to bolster domestic critical minerals and battery supply chains, Brainard said, citing projects from major lithium mines in Nevada and North Carolina to battery factories in Michigan and Ohio to production of rare earth elements and magnets in California and Texas.

“We’re using every tool at our disposal, from grants and loans to allocated tax credits,'' she said, adding that the administration's approach has leveraged more $100 billion in private sector investment since Biden took office.

In recent years, China has cornered the market for processing and refining key minerals such as lithium, rare earth elements and gallium, and also has dominated battery production, leaving the U.S. and its allies and partners "vulnerable,'' Brainard said.

The U.S. has responded by taking what she called “tough, targeted measures to enforce against unfair actions by China.” Just last week, officials finalized higher tariffs on Chinese imports of critical minerals such as graphite used in EV and grid-storage batteries. The administration also has acted under the 2022 climate law to incentivize domestic sourcing for EVs sold in the U.S. and placed restrictions on products from China and other adversaries labeled by the U.S. as foreign entities of concern.

"We're committed to making batteries in the United States of America,'' Energy Secretary Jennifer Granholm said.

If finalized, awards announced Friday will support 25 projects with 8,000 construction jobs and over 4,000 permanent jobs, officials said. Companies will be required to match grants on a 50-50 basis, with a minimum $50 million investment, the Energy Department said.

While federal funding may not be make-or-break for some projects, the infusion of cash from the infrastructure and climate laws has dramatically transformed the U.S. battery manufacturing sector in the past few years, said Matthew McDowell, associate professor of engineering at Georgia Institute of Technology.

McDowell said he is excited about the next generation of batteries for clean energy storage, including solid state batteries, which could potentially hold more energy than lithium ion.

A company headquartered in The Woodlands has secured funding to study the recovery of rare earth elements as they pertain to the energy transition. Photo via tetratec.com

DOE grants Houston-area energy tech co. over $5M for rare earth elements study

energy transition materials

The Woodlands-based Tetra Technologies, an energy technology and services company, has picked up nearly $5.4 million in U.S. Department of Energy funding to study the recovery of rare earth elements and other critical minerals from coal byproducts in Pennsylvania.

The funding also will enable Tetra to explore converting coal byproducts, known as underclay, into clays that could be sold. In addition to the DOE funding, the company also secured about $1.3 million for a total of $6.7 million.

Publicly traded Tetra got the funding as part of a more than $17 million package aimed at designing and building facilities to produce rare earth elements, along with other critical minerals and materials, from coal resources. The Department of Energy (DOE) says these minerals and materials will go toward generating clean energy.

Rare earth elements can be derived from the country’s more than 250 billion tons of coal reserves, over 4 billion tons of waste coal, and about 2 billion tons of coal ash, according to DOE.

Clean energy fixtures like solar plants, wind farms, and electric vehicles generally require more minerals to build than their fossil-fuel-based counterparts, according to the International Energy Agency. For example, a typical electric car requires six times the mineral resources of a conventional car and an onshore wind plant requires nine times more mineral resources than a gas-fired plant.

The American Geosciences Institute says rare earth elements, a set of 17 metallic elements, also are an essential component of many tech-dependent products. These include cell phones, flat-screen TVs, and radar and sonar systems.

China is the top country for production of rare earth elements, with the U.S. far behind at No. 2.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH researchers develop breakthrough material to boost efficiency of sodium-ion batteries

future of batteries

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Texas A&M awarded $1.3M federal grant to develop clean energy tech from electronic waste

seeing green

Texas A&M University in College Station has received a nearly $1.3 million federal grant for development of clean energy technology.

The university will use the $1,280,553 grant from the U.S. Department of Energy to develop a cost-effective, sustainable method for extracting rare earth elements from electronic waste.

Rare earth elements (REEs) are a set of 17 metallic elements.

“REEs are essential components of more than 200 products, especially high-tech consumer products, such as cellular telephones, computer hard drives, electric and hybrid vehicles, and flat-screen monitors and televisions,” according to the Eos news website.

REEs also are found in defense equipment and technology such as electronic displays, guidance systems, lasers, and radar and sonar systems, says Eos.

The grant awarded to Texas A&M was among $17 million in DOE grants given to 14 projects that seek to accelerate innovation in the critical materials sector. The federal Energy Act of 2020 defines a critical material — such as aluminum, cobalt, copper, lithium, magnesium, nickel, and platinum — as a substance that faces a high risk of supply chain disruption and “serves an essential function” in the energy sector.

“DOE is helping reduce the nation’s dependence on foreign supply chains through innovative solutions that will tap domestic sources of the critical materials needed for next-generation technologies,” says U.S. Energy Secretary Jennifer Granholm. “These investments — part of our industrial strategy — will keep America’s growing manufacturing industry competitive while delivering economic benefits to communities nationwide.”