Locksley Resources will provide antimony-rich feedstocks from a project in the Mojave Desert as part of a new partnership with Rice University that aims to develop scalable methods for extracting and utilizing antimony. Photo via locksleyresources.com.au.

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”

Base Power, founded by Justin Lopas and Zach Dell, has closed one of the largest venture capital deals of the year. Photo courtesy Base Power.

Energy startup Base Power raises $1 billion series C round

fresh funding

Austin-based startup Base Power, which offers battery-supported energy in the Houston area and other regions, has raised $1 billion in series C funding—making it one of the largest venture capital deals this year in the U.S.

VC firm Addition led the $1 billion round. All of Base Power’s existing major investors also participated, including Trust Ventures, Valor Equity Partners, Thrive Capital, Lightspeed Venture Partners, Andreessen Horowitz (a16z), Altimeter, StepStone Group, 137 Ventures, Terrain, Waybury Capital, and entrepreneur Elad Gil. New investors include Ribbit Capital, Google-backed CapitalG, Spark Capital, Bond, Lowercarbon Capital, Avenir Growth Capital, Glade Brook Capital Partners, Positive Sum and 1789 Capital Management.

Coupled with the new $1 billion round, Base Power has hauled in more than $1.27 billion in funding since it was founded in 2023.

Base Power supplies power to homeowners and the electric grid through a distributed storage network.

“The chance to reinvent our power system comes once in a generation,” Zach Dell, co-founder and CEO of Base Power, said in a news release. “The challenge ahead requires the best engineers and operators to solve it, and we’re scaling the team to make our abundant energy future a reality.”

Zach Dell is the son of Austin billionaire and Houston native Michael Dell, chairman and CEO of Round Rock-based Dell Technologies.

In less than two years, Base Power has developed more than 100 megawatt-hours of battery-enabled storage capacity. One megawatt-hour represents one hour of energy use at a rate of one million watts.

Base Power recently expanded its service to the city of Houston. It already was delivering energy to several other communities in the Houston area. To serve the Houston region, the startup has opened an office in Katy.

The startup also serves the Dallas-Fort Worth and Austin markets. At some point, Base Power plans to launch a nationwide expansion.

To meet current and future demand, Base Power is building its first energy storage and power electronics factory at the former downtown Austin site of the Austin American-Statesman’s printing presses.

“We’re building domestic manufacturing capacity for fixing the grid,” Justin Lopas, co-founder and chief operating officer of Base Power, added in the release. “The only way to add capacity to the grid is [by] physically deploying hardware, and we need to make that here in the U.S. ... This factory in Austin is our first, and we’re already planning for our second.”

ENGIE is partnering with Prometheus Hyperscale to develop liquid-cooled, AI-ready data centers in Texas. Photo via engie.com

Engie launches next-generation data center development in Texas

coming soon

Houston-based Engie North America has entered into an agreement with Wyoming-based Prometheus Hyperscale to develop liquid-cooled data centers at select renewable and battery storage energy facilities along Texas’ I-35 corridor. Its first AI-ready data center compute capacity sites are expected to go live in 2026.

“By leveraging our robust portfolio of wind, solar, and battery storage assets — combined with our commercial and industrial supply capabilities and deep trading expertise — we're providing integrated energy solutions that support scalable, resilient, and sustainable infrastructure," David Carroll, chief renewables officer and SVP of ENGIE North America, said in a news release.

Prometheus plans to use its high-efficiency, liquid-cooled data center infrastructure in conjunction with ENGIE's renewable and battery storage assets. Both companies believe they can meet the growing demand for reliable, sustainable compute capacity, which would support AI and other more demanding workloads.

"Prometheus is committed to developing sustainable, next-generation digital infrastructure for AI," Bernard Looney, chairman of Prometheus Hyperscale, said in the release. "We cannot do this alone—ENGIE's existing assets and expertise as a major player in the global energy transition make them a perfect partner as we work to build data centers that meet market needs today and tomorrow."

On-site power generation provider Conduit Power will assist Prometheus for near-term bridging and back-up solutions, and help tenants to offset project-related carbon emissions through established market-based mechanisms.

More locations are being planned for 2027 and beyond.

"Our collaboration with Prometheus demonstrates our shared approach to finding innovative approaches to developing, building and operating projects that solve real-world challenges,” Carroll added in the release.

A forecast from Energy Innovation Policy & Technology shows that Texas is expected to see a decline in solar, wind and battery-powered storage by 2035 due to clean energy tax credit repeals in the 'One Big Beautiful Bill Act.' Photo via Getty Images.

New forecast shows impact of 'Big Beautiful Bill' on Texas clean energy generation

energy forecast

Texas is expected to see a 77-gigawatt decrease in power generation capacity within the next 10 years under the federal "One Big Beautiful Bill Act," which President Trump recently signed into law, a new forecast shows.

Primarily due to the act’s repeal of some clean energy tax credits, a forecast, published by energy policy research organization Energy Innovation Policy & Technology, predicts that Texas is expected to experience a:

  • 54-gigawatt decline in capacity from solar power by 2035
  • 23-gigawatt decline in capacity from wind power by 2035
  • 3.1-gigawatt decline in capacity from battery-stored power by 2035
  • 2.5-gigawatt increase in capacity from natural gas by 2035

The legislation “will reduce additions of new, cost-effective electricity capacity in Texas, raising power prices for consumers and decreasing the state’s GDP and job growth in the coming years,” the forecast says.

The forecast also reports that the loss of sources of low-cost renewable energy and the resulting hike in natural gas prices could bump up electric bills in Texas. The forecast envisions a 23 percent to 54 percent hike in electric rates for residential, commercial and industrial customers in Texas.

Household energy bills are expected to increase by $220 per year by 2030 and by $480 per year by 2035, according to the forecast.

Energy Innovation Policy & Technology expects job growth and economic growth to also take a hit under the "Big Beautiful Bill."

The nonprofit organization foresees annual losses of $5.9 billion in Texas economic output (as measured by GDP) by 2030 and $10 billion by 2035. In tandem with the impact on GDP, Texas is projected to lose 42,000 jobs by 2030 and 94,000 jobs by 2035 due to the law’s provisions, according to the organization.

The White House believes the "Big Beautiful Bill" will promote, not harm, U.S. energy production. The law encourages the growth of traditional sources of power such as oil, natural gas, coal and hydropower.

“The One Big Beautiful Bill Act is a historic piece of legislation that will restore energy independence and make life more affordable for American families by reversing disastrous Biden-era policies that constricted domestic energy production,” Interior Secretary Doug Burgum said in a news release.

Promoters of renewable energy offer an opposing viewpoint.

“The bill makes steep cuts to solar energy and places new restrictions on energy tax credits that will slow the deployment of residential and utility-scale solar while undermining the growth of U.S. manufacturing,” says the Solar Energy Industries Association.

Jason Grumet, CEO of the American Clean Power Association, complained that the legislation limits energy production, boosts prices for U.S. businesses and families, and jeopardizes the reliability of the country’s power grid.

“Our economic and national security requires that we support all forms of American energy,” Grumet said in a statement. “It is time for the brawlers to get out of the way and let the builders get back to work.”

Texas has the largest installed wind capacity in the United States. Photo by Sam LaRussa on Unsplash

Expert: Debunking the myth that Texas doesn't care about renewable energy

Guest Column

When most people think about Texas, wind turbines and solar panels may not be the first images that come to mind. But in reality, the state now leads the nation in both wind-powered electricity generation and utility-scale solar capacity. In 2024 alone, Texas added approximately 9,700 megawatts of solar and 4,374 megawatts of battery storage, outpacing all other energy sources in new generation capacity that year. So what’s driving Texas’ rapid rise as the renewable energy capital of the United States?

Leader in wind energy

Texas has been a national leader in wind energy for more than a decade, thanks to its vast open landscapes and consistent wind conditions, particularly in regions like West Texas and the Panhandle. These ideal geographic features have enabled the development of massive wind farms, giving Texas the largest installed wind capacity in the United States. Wind energy also plays a strategic role in balancing the grid and complements solar energy well, as it often peaks at night when solar output drops.

Battery storage growth

Increasing battery storage capacity is unlocking more potential from solar and wind. When intermittent energy sources like wind and solar go offline, batteries release stored electricity and provide stability to the Electric Reliability Council of Texas system. Excluding California, Texas has more battery storage than the rest of the United States combined, accounting for over 32% of all the capacity installed nationwide.

Solar electricity generation and utility-scale batteries within ERCOT power grid set records in summer 2024. Between June 1 and August 31, solar contributed nearly 25% of total power demand during mid-day hours. In the evening, as demand stayed high but solar output declined, battery discharges successfully filled the gap. Battery storage solutions are now a core element of ERCOT’s future capacity and demand planning.

Interest in creating a hydrogen economy

Texas is well positioned to become a national hub in the hydrogen economy. The state has everything needed to lead in this emerging space with low-cost natural gas, abundant and growing low carbon electricity, geology well suited for hydrogen and carbon storage, mature hydrogen demand centers, existing hydrogen pipelines, established port infrastructure and more. The state already has an existing hydrogen market with two-thirds of the country’s hydrogen transport infrastructure.

In 2023, the Texas Legislature created the Texas Hydrogen Production Policy Council, which found that:

  • Hydrogen could represent a grid-scale energy storage solution that can help support the increased development of renewable electricity from wind and solar. Renewable electricity that is converted to hydrogen can improve overall grid reliability, resilience and dispatchability.
  • The development of the hydrogen industry, along with its supporting infrastructure and its downstream markets within Texas, could attract billions of dollars of investment. This development may create hundreds of thousands of jobs - especially with younger generations who are passionate about climate science - and greatly boost the Texas economy.
  • Hydrogen supports the current energy economy in Texas as a critical component to both conventional refining and the growing production of new biofuels (such as renewable diesel and sustainable aviation fuel) within the state.

Legislative action and pressure to reduce carbon emissions

Texas has also seen key legislative actions and policies that have supported the growth of renewable energy in Texas. During the most recent legislative session, lawmakers decided that The Texas Energy Fund, a low-interest loan program aimed at encouraging companies to build more power infrastructure, will receive an additional $5 billion on top of the $5 billion lawmakers approved in 2023. Of that amount, $1.8 billion is earmarked to strengthen existing backup generators, which must be powered by a combination of solar, battery storage and natural gas. These funds signal growing institutional support for a diversified and more resilient energy grid.

Furthermore, there is growing pressure from investors, regulators and consumers to reduce carbon emissions, and as a result, private equity firms in the oil and gas sector are diversifying their portfolios to include wind, solar, battery storage and carbon capture projects. In 2022, private equity investment in renewable energy and clean technology surged to a record-high $26 billion.

The future of the renewable energy workforce

With renewable energy jobs projected to grow to 38 million globally by 2030, the sector is poised to be one of the most promising career landscapes of the future. Given that young people today are increasingly environmentally conscious, there is a powerful opportunity to engage students early and help them see how their values align with meaningful, purpose-driven careers in clean energy. Organizations like the Energy Education Foundation play a vital role in this effort by providing accessible, high-quality resources that bridge the gap between energy literacy and real-world impact. The nonprofit employs comprehensive, science-based educational initiatives to help students and educators explore complex energy topics through clear explanations and engaging learning tools, laying a strong foundation for informed, future-ready learners.

STEM and AI education, which are reshaping how young people think, build, and solve problems, provide a natural gateway into the renewable energy field. From robotics and coding to climate modeling and sustainable engineering, these learning experiences equip students with the critical skills and mindsets needed to thrive in a rapidly evolving energy economy. By investing in engaging, future-focused learning environments now and through leveraging trusted educational partners, like the Energy Education Foundation, we can help ensure that the next generation of learners are not just prepared to enter the clean energy workforce but are empowered to lead it.

With its rapidly growing wind, solar, battery and hydrogen sectors, Texas is redefining its energy identity. To sustain this momentum, the state must continue aligning education, policy, and innovation—not only to meet the energy demands of tomorrow, but to inspire and equip the next generation to lead the way toward a more sustainable, resilient and inclusive energy future.

---

Kristen Barley is the executive director of the Energy Education Foundation, a nonprofit dedicated to inspiring the next generation of energy leaders by providing comprehensive, engaging education that spans the entire energy spectrum.


Engie and CBRE IM have partnered on a portfolio of 31 projects in ERCOT and California-based CAISO territories. Photo via Getty Images

Engie partners on major Texas, California battery storage portfolio

power partners

Houston’s Engie North America has partnered with New York-based CBRE Investment Management on a 2.4-gigawatt portfolio of battery storage assets in Texas and California.

The portfolio consists of 31 projects operating in the Electric Reliability Council of Texas (ERCOT) and California Independent System Operator (CAISO) territories. According to a company statement, the transaction represents one of Engie’s largest operating portfolio partnerships in the U.S.

“We are delighted that ENGIE and CBRE IM are partnering in this industry-leading transaction, supporting 2.4 GW of storage that will support the growing demand for power in Texas and California,” Dave Carroll, Chief Renewables Officer and SVP, ENGIE North America, said in the news release.

The deal is also one of the sector’s largest sales completed to date. Engie will retain a controlling share in the portfolio and will continue to operate and manage the assets.

“The scale of this portfolio reflects ENGIE’s commitments to meeting the energy needs of the U.S. and increasing the resilience of the ERCOT and CAISO grids,” Carroll added in the news release. “CBRE IM’s investment reflects their confidence in ENGIE’s proven track record in developing, building, operating and financing renewable assets, both in North America and globally.”

In North America, ENGIE currently has more than 11 gigawatts of renewable production and battery storage in operation or construction. Last year, Engie added 4.2 gigawatts of renewable energy capacity worldwide, bringing the total capacity to 46 gigawatts as of December 31. It also recently made a preliminary deal to supply wind power to a Cipher Mining data center in Texas.

As of March 31, 2025, CBRE IM had $149.1 billion in assets under management and operated in 20 countries.

“We are excited to partner with ENGIE on this high-quality, scaled battery storage portfolio with a strong operating track record,” Robert Shaw, managing director, private infrastructure strategies at CBRE Investment Management, said in the release.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Energy expert: What 2025 revealed about the evolution of Texas power

guest column

2025 marked a pivotal year for Texas’ energy ecosystem. Rising demand, accelerating renewable integration, tightening reserve margins and growing industrial load reshaped the way policymakers, utilities and the broader market think about reliability.

This wasn’t just another year of operational challenges; it was a clear signal that the state is entering an era where growth and innovation must move together in unison if Texas is going to keep pace.

What happened in 2025 is already influencing the decisions utilities, regulators and large energy consumers will make in 2026 and beyond. If Texas is going to remain the nation’s proving ground for large-scale energy innovation, this year made one thing clear: we need every tool working together and working smarter.

What changed: Grid, policy & the growth of renewables

This year, ERCOT recorded one of the steepest demand increases in its history. From January through September 2025, electricity consumption reached 372 terawatt-hours (TWh), a 5 percent increase over the previous year and a 23 percent jump since 2021. That growth officially positions ERCOT as the fastest-expanding large grid in the country.

To meet this rising load, Texas leaned heavily on clean energy. Solar, wind and battery storage served approximately 36 percent of ERCOT’s electricity needs over the first nine months of the year, a milestone that showcased how quickly Texas has diversified its generation mix. Utility-scale solar surged to 45 TWh, up 50 percent year-over-year, while wind generation reached 87 TWh, a 36 percent increase since 2021.

Battery storage also proved its value. What was once niche is now essential: storage helped shift mid-day excess solar to evening peaks, especially during a historic week in early spring when Texas hit new highs for simultaneous wind, solar and battery output.

Still, natural gas remained the backbone of reliability. Dispatchable thermal resources supplied more than 50 percent of ERCOT’s power 92 percent of the time in Q3 2025. That dual structure of fast-growing renewables backed by firm gas generation is now the defining characteristic of Texas’s energy identity.

But growth cuts both ways. Intermittent generation is up, yet demand is rising faster. Storage is scaling, but not quite at the rate required to fill the evening reliability gap. And while new clean-energy projects are coming online rapidly, the reality of rising population, data center growth, electrification and heavy industrial expansion continues to outpace the additions.

A recent forecast from the Texas Legislative Study Group projects demand could climb another 14 percent by mid-2026, tightening reserve margins unless meaningful additions in capacity, or smarter systemwide usage, arrive soon.

What 2025 meant for the energy ecosystem

The challenges of 2025 pushed Texas to rethink reliability as a shared responsibility between grid operators, generation companies, large load customers, policymakers and consumers. The year underscored several realities:

1. The grid is becoming increasingly weather-dependent. Solar thrives in summer; wind dominates in spring and winter. But extreme heat waves and cold snaps also push demand to unprecedented levels. Reliability now hinges on planning for volatility, not just averages.

2. Infrastructure is straining under rapid load growth. The grid handled multiple stress events in 2025, but it required decisive coordination and emerging technologies, such as storage methods, to do so.

3. Innovation is no longer optional. Advanced forecasting, grid-scale batteries, demand flexibility tools, and hybrid renewable-gas portfolios are now essential components of grid stability.

4. Data centers and industrial electrification are changing the game. Large flexible loads present both a challenge and an opportunity. With proper coordination, they can help stabilize the grid. Without it, they can exacerbate conditions of scarcity.

Texas can meet these challenges, but only with intentional leadership and strong public-private collaboration.

The system-level wins of 2025

Despite volatility, 2025 showcased meaningful progress:

Renewables proved their reliability role. Hitting 36 percent of ERCOT’s generation mix for three consecutive quarters demonstrates that wind, solar and batteries are no longer supplemental — they’re foundational.

Storage emerged as a real asset for reliability. Battery deployments doubled their discharge records in early 2025, showing the potential of short-duration storage during peak periods.

The dual model works when balanced wisely. Natural gas continues to provide firm reliability during low-renewable hours. When paired with renewable growth, Texas gains resilience without sacrificing affordability.

Energy literacy increased across the ecosystem. Communities, utilities and even industrial facilities are paying closer attention to how loads, pricing signals, weather and grid conditions interact—a necessary cultural shift in a fast-changing market.

Where Texas goes in 2026

Texas heads into 2026 with several unmistakable trends shaping the road ahead. Rate adjustments will continue as utilities like CenterPoint request cost recovery to strengthen infrastructure, modernize outdated equipment and add the capacity needed to handle record-breaking growth in load.

At the same time, weather-driven demand is expected to stay unpredictable. While summer peaks will almost certainly set new records, winter is quickly becoming the bigger wild card, especially as natural gas prices and heating demand increasingly drive both reliability planning and consumer stress.

Alongside these pressures, distributed energy is set for real expansion. Rooftop solar, community battery systems and hybrid generation-storage setups are no longer niche upgrades; they’re quickly becoming meaningful grid assets that help support reliability at scale.

And underlying all of this is a cultural shift toward energy literacy. The utilities, regulators, businesses, and institutions that understand load flexibility, pricing signals and efficiency strategies will be the ones best positioned to manage costs and strengthen the grid. In a market that’s evolving this fast, knowing how we use energy matters just as much as knowing how much.

The big picture: 2025 as a blueprint for a resilient future

If 2025 showed us anything, it’s that Texas can scale innovation at a pace few states can match. We saw record renewable output, historic storage milestones and strong thermal performance during strain events. The Texas grid endured significant stress but maintained operational integrity.

But it also showed that reliability isn’t a static achievement; it’s a moving target. As population growth, AI and industrial electrification and weather extremes intensify, Texas must evolve from a reactive posture to a proactive one.

The encouraging part is that Texas has the tools, the talent and the market structure to build one of the most resilient and future-ready power ecosystems in the world. The test ahead isn’t whether we can generate enough power; it’s whether we can coordinate systems, technologies and market behavior fast enough to meet the moment.

And in 2026, that coordination is precisely where the opportunity lies.

———

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

Blackstone clears major step in acquisition of TXNM Energy

power deal

A settlement has been reached in a regulatory dispute over Blackstone Infrastructure’s pending acquisition of TXNM Energy, the parent company of Texas-New Mexico Power Co. , which provides electricity in the Houston area. The settlement still must be approved by the Public Utility Commission of Texas.

Aside from Public Utility Commission staffers, participants in the settlement include TXNM Energy, Texas cities served by Texas-New Mexico Power, the Texas Office of Public Utility Counsel, Texas Industrial Energy Consumers, Walmart and the Texas Energy Association for Marketers.

Texas-New Mexico Power, based in the Dallas-Fort Worth suburb of Lewisville, supplies electricity to more than 280,000 homes and businesses in Texas. Ten cities are in Texas-New Mexico Power’s Houston-area service territory:

  • Alvin
  • Angleton
  • Brazoria
  • Dickinson
  • Friendswood
  • La Marque
  • League City
  • Sweeny
  • Texas City
  • West Columbia

Under the terms of the settlement, Texas-New Mexico Power must:

  • Provide a $45.5 million rate credit to customers over 48 months, once the deal closes
  • Maintain a seven-member board of directors, including three unaffiliated directors as well as the company’s president and CEO
  • Embrace “robust” financial safeguards
  • Keep its headquarters within the utility’s Texas service territory
  • Avoid involuntary layoffs, as well as reductions of wages or benefits related to for-cause terminations or performance issues

The settlement also calls for Texas-New Mexico Power to retain its $4.2 billion five-year capital spending plan through 2029. The plan will help Texas-New Mexico Power cope with rising demand; peak demand increased about 66 percent from 2020 to 2024.

Citing the capital spending plan in testimony submitted to the Public Utility Commission, Sebastian Sherman, senior managing director of Blackstone Infrastructure, said Texas-New Mexico Power “needs the right support to modernize infrastructure, to strengthen the grid against wildfire and other risks, and to meet surging electricity demand in Texas.”

Blackstone Infrastructure, which has more than $64 billion in assets under management, agreed in August to buy TXNM Energy in a $11.5 billion deal.

Neal Walker, president of Texas-New Mexico Power, says the deal will help his company maintain a reliable, resilient grid, and offer “the financial resources necessary to thrive in this rapidly changing energy environment and meet the unprecedented future growth anticipated across Texas.”

Constellation and Calpine's $26B clean energy megadeal clears final regulatory hurdle

big deal

Baltimore-based nuclear power company Constellation Energy Corp. received final regulatory clearance this month to acquire Houston-based Calpine Corp. for a net purchase price of $26.6 billion.

The acquisition has the potential to create America’s “largest clean energy provider,” the companies reported when the deal was first announced in January.

The Department of Justice approved the acquisition contingent on Calpine divesting several assets, including one in the Houston area.

The company agreed to divest the Jack Fusco Energy Center natural gas-fired combined cycle facility in Richmond, Texas; four generating assets in the Mid-Atlantic region; and other natural gas plants in Pennsylvania and Corpus Christi, Texas.

The Federal Energy Regulatory Commission, the Public Utility Commission of Texas and the New York Public Service Commission previously approved the deal. The companies can move toward closing the acquisition once the court finalizes the stipulation and order.

"We are very pleased to reach a settlement that allows us to bring together two magnificent companies to create a new Constellation with unprecedented scale, talent and capability to better serve our customers and communities while building the foundation for America’s next great era of growth and innovation," Joe Dominguez, president and CEO of Constellation, said in a news release. "We thank the Department for its professionalism and tireless work reviewing this transaction through these many months. It’s now time for us to complete the transaction, welcome our new colleagues from Calpine, and together begin our journey to light the way to a brilliant tomorrow for all."

Andrew Novotny, CEO of Calpine, will continue to lead the Calpine business and Constellation's fleet of natural gas, hydro, solar and wind generation, according to the company. He will report to Dominguez and also serve as senior executive vice president of Constellation Power Operations.

Constellation is considered one of the top clean energy producers in the U.S. Earlier this month, the company was approved to receive a $1 billion loan from the Department of Energy's Energy Dominance Financing Program to restart its 835-megawatt nuclear reactor in Pennsylvania known as Crane Clean Energy Center.

"Work to restart the reactor comes at a time of unprecedented electric demand growth from electrification and the new data centers needed to support a growing digital economy and to help America win the AI race," a news release from the company reads. "Crane will support grid stability by delivering reliable, around-the-clock electric supply."