changing hands

Houston energy equipment service provider acquired by New York PE firm

One Equity Partners announced the acquisition of EthosEnergy, which focuses on rotating equipment services for power generation, energy, industrial, and aerospace and defense industry.

Houston-based energy equipment service provider EthosEnergy has been acquired by a New York private equity firm.

One Equity Partners announced the acquisition of EthosEnergy, which focuses on rotating equipment services for power generation, energy, industrial, and aerospace and defense industry. The terms of the deal were not disclosed.

Formed in 2014 as a joint venture between John Wood Group and Siemens Energy AG, EthosEnergy, which has 3,600 employees across 23 global sites, provides aftermarket maintenance, repair, and overhaul, or MRO, services as well as outsourced operations and maintenance for power generation and industrial customers operating industrial gas turbines and other similar equipment.

“As we seek to enhance and grow our operations, we are pleased to have OEP backing us as a partner,” EthosEnergy CEO Ana Amicarella says in a news release. “OEP’s longstanding and deep industrial sector expertise will support EthosEnergy as we serve growing needs in a critical industry.”

A middle market PE firm, OEP focuses on the industrial, healthcare, and technology sectors in North America and Europe. The firm was founded in 2001 and spun out of JP Morgan in 2015. It has offices in New York, Chicago, Frankfurt, and Amsterdam.

“EthosEnergy is uniquely positioned to meet the growing maintenance needs of an aging turbine fleet," Ante Kusurin, partner at One Equity Partners, adds. "As energy demand rises, these turbines are being pushed beyond their initial design parameters, creating significant opportunities for EthosEnergy’s flexible, cost-effective services.”

Last year, Amicarella joined EnergyCapital for an interview where she discussed the company's commitment to the energy transition.

"Our focus on sustainability is the right thing to do for our employees, for our customers, and for our communities," she said in the interview.

Trending News

A View From HETI

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Trending News