Ana Amicarella, CEO of EthosEnergy, joins the Houston Innovators Podcast to discuss the company's growth amid the energy transition. Photo courtesy of EthosEnergy

For most of her career, Ana Amicarella has been the only person in the room who looks like her. But as CEO of Houston-based EthosEnergy, she's changing that.

"The energy sector for sure is highly dominated by men, but I think it's such an exciting environment," Amicarella says on the Houston Innovators Podcast. "What I try to do at every job that I go to is I try to increase representation — diverse representation and females in the company. And I measure that when I started and when I end. I want to be able to make a difference."

Amicarella joined EthosEnergy — which provides rotating equipment services and solutions to the power, oil and gas, and industrial markets — as CEO in 2019 a few years after it was in 2014 as a joint venture between John Wood Group PLC and Siemens Energy AG. Prior to her current role, she served in leadership roles at Aggreko an GE Oil and Gas.

Recently, EthosEnergy announced it's being acquired by New York private equity firm, One Equity Partners, which Amicarella says is very interested in investing into EthosEnergy and its ability to contribute to the energy transition.

"What One Equity Partners will bring is tremendous decisiveness. They won't delay in deciding what is good for the company — I've already seen examples," Amicarella says, adding that the deal hasn't get been finalized. "They are going to make decisions and trust the management team, I think our pace of change will be enormous compared to what it used to be."

While EthosEnergy has customers from traditional oil and gas, she says she leads the company with the energy transition at the top of her mind, and that means being able to grow and evolve.

"One of the behaviors we look to have at EthosEnergy is an ability to be nimble," Amicarella says, "because we know market conditions change. Think of all the things we've had to go through in the last five years."

———

This article originally ran on InnovationMap.

One Equity Partners announced the acquisition of EthosEnergy, which focuses on rotating equipment services for power generation, energy, industrial, and aerospace and defense industry.

Houston energy equipment service provider acquired by New York PE firm

changing hands

Houston-based energy equipment service provider EthosEnergy has been acquired by a New York private equity firm.

One Equity Partners announced the acquisition of EthosEnergy, which focuses on rotating equipment services for power generation, energy, industrial, and aerospace and defense industry. The terms of the deal were not disclosed.

Formed in 2014 as a joint venture between John Wood Group and Siemens Energy AG, EthosEnergy, which has 3,600 employees across 23 global sites, provides aftermarket maintenance, repair, and overhaul, or MRO, services as well as outsourced operations and maintenance for power generation and industrial customers operating industrial gas turbines and other similar equipment.

“As we seek to enhance and grow our operations, we are pleased to have OEP backing us as a partner,” EthosEnergy CEO Ana Amicarella says in a news release. “OEP’s longstanding and deep industrial sector expertise will support EthosEnergy as we serve growing needs in a critical industry.”

A middle market PE firm, OEP focuses on the industrial, healthcare, and technology sectors in North America and Europe. The firm was founded in 2001 and spun out of JP Morgan in 2015. It has offices in New York, Chicago, Frankfurt, and Amsterdam.

“EthosEnergy is uniquely positioned to meet the growing maintenance needs of an aging turbine fleet," Ante Kusurin, partner at One Equity Partners, adds. "As energy demand rises, these turbines are being pushed beyond their initial design parameters, creating significant opportunities for EthosEnergy’s flexible, cost-effective services.”

Last year, Amicarella joined EnergyCapital for an interview where she discussed the company's commitment to the energy transition.

"Our focus on sustainability is the right thing to do for our employees, for our customers, and for our communities," she said in the interview.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

DOE grants $13.7M tax credit to power Houston clean hydrogen project

power move

Permascand USA Inc., a subsidiary of Swedish manufacturing company Permascand, has been awarded a $13.7 million tax credit by the U.S. Department of Energy (DOE) to expand across the country, including a new clean hydrogen manufacturing facility in Houston.

The new Houston facility will manufacture high-performance electrodes from new and recycled materials.

"We are proud to receive the support of the U.S. Department of Energy within their objective for clean energy," Permascand CEO Fredrik Herlitz said in a news release. "Our mission is to provide electrochemical solutions for the global green transition … This proposed project leverages Permascand’s experience in advanced technologies and machinery and will employ a highly skilled workforce to support DOE’s initiative in lowering the levelized cost of hydrogen.”

The funding comes from the DOE’s Qualifying Advanced Energy Project Credit program, which focuses on clean energy manufacturing, recycling, industrial decarbonization and critical materials projects.

The Permascand proposal was one of 140 projects selected by the DOE with over 800 concept papers submitted last summer. The funding is part of $6 billion in tax credits in the second round of the Qualifying Advanced Energy Project Credit program that was deployed in January.

So far credits have been granted to approximately 250 projects across more than 40 states, with project investments over $44 billion dollars, according to the Department of Treasury. Read more here.

Houston researchers reach 'surprising' revelation in materials recycling efforts

keep it clean

Researchers at Rice University have published a study in the journal Carbon that demonstrates how carbon nanotube (CNT) fibers can be fully recycled without any loss in their structure or properties.

The discovery shows that CNT fibers could be used as a sustainable alternative to traditional materials like metals, polymers and the larger, harder-to-recycle carbon fibers, which the team hopes can pave the way for more sustainable and efficient recycling efforts.

“Recycling has long been a challenge in the materials industry — metals recycling is often inefficient and energy intensive, polymers tend to lose their properties after reprocessing and carbon fibers cannot be recycled at all, only downcycled by chopping them up into short pieces,” corresponding author Matteo Pasquali, director of Rice’s Carbon Hub and the A.J. Hartsook Professor of Chemical and Biomolecular Engineering, Materials Science and NanoEngineering and Chemistry, explained in a news release. “As CNT fibers are being scaled up, we asked whether and how these new materials could be recycled in the future .... We expected that recycling would be difficult and would lead to significant loss of properties. Surprisingly, we found that carbon nanotube fibers far exceed the recyclability potential of existing engineered materials, offering a solution to a major environmental issue.”

Rice researchers used a solution-spun CNT fiber that was created by dissolving fiber-grade commercial CNTs in chlorosulfonic acid, according to Rice. Mixing the two fibers led to complete redissolution and no sign of separation of the two source materials into different liquid phases. This redissolved material was spun into a mixed-source recycled fiber that retained the same structure and alignment, which was unprecedented.

Pasquali explained in a video release that the new material has properties that overlap with and could be a replacement for carbon fibers, kevlar, steel, copper and aluminum.

“This preservation of quality means CNT fibers can be used and reused in demanding applications without compromising performance, thus extending their lifecycle and reducing the need for new raw materials,” co-first author Ivan R. Siqueira, a recent doctoral graduate in Rice’s Department of Chemical and Biomolecular Engineering, said in a news release.

Other co-authors of the paper are Rice graduate alumni Oliver Dewey, now of DexMat; Steven Williams; Cedric Ginestra, now of LyondellBasell; Yingru Song, now a postdoctoral fellow at Purdue University; Rice undergraduate alumnus Juan De La Garza, now of Axiom Space; and Geoff Wehmeyer, assistant professor of mechanical engineering.

The research is part of the broader program of the Rice-led Carbon Hub, an initiative to develop a zero-emissions future. The work was also supported by the Department of Energy’s Advanced Research Project Agency, the Air Force Office of Scientific Research and a number of other organizations.

Pasquali recently led another team of Rice researchers to land a $4.1 million grant to optimize CNT synthesis. The funds came from Rice’s Carbon Hub and The Kavli Foundation. Read more here.

.

.

.