A team led by M.A.S.R. Saadi and Muhammad Maksud Rahman has developed a biomaterial that they hope could be used for the “next disposable water bottle." Photo courtesy Rice University.

Collaborators from two Houston universities are leading the way in engineering a biomaterial into a scalable, multifunctional material that could potentially replace plastic.

The research was led by Muhammad Maksud Rahman, an assistant professor of mechanical and aerospace engineering at the University of Houston and an adjunct assistant professor of materials science and nanoengineering at Rice University. The team shared its findings in a study in the journal Nature Communications earlier this month. M.A.S.R. Saadi, a doctoral student in material science and nanoengineering at Rice, served as the first author.

The study introduced a biosynthesis technique that aligns bacterial cellulose fibers in real-time, which resulted in robust biopolymer sheets with “exceptional mechanical properties,” according to the researchers.

Biomaterials typically have weaker mechanical properties than their synthetic counterparts. However, the team was able to develop sheets of material with similar strengths to some metals and glasses. And still, the material was foldable and fully biodegradable.

To achieve this, the team developed a rotational bioreactor and utilized fluid motion to guide the bacteria fibers into a consistent alignment, rather than allowing them to align randomly, as they would in nature.

The process also allowed the team to easily integrate nanoscale additives—like graphene, carbon nanotubes and boron nitride—making the sheets stronger and improving the thermal properties.

“This dynamic biosynthesis approach enables the creation of stronger materials with greater functionality,” Saadi said in a release. “The method allows for the easy integration of various nanoscale additives directly into the bacterial cellulose, making it possible to customize material properties for specific applications.”

Ultimately, the scientists at UH and Rice hope this discovery could be used for the “next disposable water bottle,” which would be made by biodegradable biopolymers in bacterial cellulose, an abundant resource on Earth.

Additionally, the team sees applications for the materials in the packaging, breathable textiles, electronics, food and energy sectors.

“We envision these strong, multifunctional and eco-friendly bacterial cellulose sheets becoming ubiquitous, replacing plastics in various industries and helping mitigate environmental damage,” Rahman said the release.

The new Rice Center for Membrane Excellence, or RiCeME, will focus on membrane separation practices and advance next-generation membrane materials, which are essential in energy conversion processes. Image via Getty Images.

Rice launches new center focused on membrane technology for energy conversion

new material

Rice University announced the formation of a new center focused on developing advanced membrane materials and separation technologies for the energy transition.

Known as the Rice Center for Membrane Excellence, or RiCeME, the center will aim to secure funding to develop more efficient and sustainable membrane separation practices and advance next-generation membrane materials, which are essential in energy conversion processes.

The center, part of Rice's Water Technologies Entrepreneurship and Research, or WaTER Institute, also plans to drive water reuse and resource recovery solutions, perform bench-scale testing and pilot-scale demonstrations, and even host workforce development workshops and symposia on membrane science and technology.

The announcement was made during the Rice Global Paris Center Symposium in Paris.

RiCeME will be led by Menachem Elimelech, the Nancy and Clint Carlson Professor in Civil and Environmental Engineering and Chemical and Biomolecular Engineering at Rice. His research focuses on membrane-based processes, advanced materials and nanotechnology.

“Houston is the ideal place to drive innovation in membrane separation technologies,” Elimelech said in a news release. “Membranes are critical for energy-related separations such as fuel cells, carbon capture and water purification. Our work will enhance efficiency and sustainability in these key sectors.”

RiCeME will work on building partnerships with Houston-area industries, including oil and gas, chemical, and energy sectors, according to the release. It will also rely on interdisciplinary research by engaging faculty from civil and environmental engineering, chemical and biomolecular engineering, materials science and nanoengineering, and chemistry departments at Rice.

“Breakthroughs in membrane technology will play a crucial role in addressing energy and sustainability challenges,” Ramamoorthy Ramesh, executive vice president for research at Rice, said in a news release. “RiCeME’s interdisciplinary approach ensures that our discoveries move from the lab to real-world applications, driving innovation at the intersection of science and industry.”.

The Rice team's process is up to 10 times more effective than existing lithium-ion battery recycling. Photo by Gustavo Raskosky/Rice University

Houston scientists discover breakthrough process for lithium-ion battery recycling

researching for the future

With the rise of electric vehicles, every ounce of lithium in lithium-ion batteries is precious. A team of scientists from Rice University has figured out a way to retrieve as much as 50 percent of the material in used battery cathodes in as little as 30 seconds.

Researchers at Rice University’s Nanomaterials Laboratory led by Department of Materials Science and NanoEngineering Chair Pulickel Ajayan released the findings a new study published in Advanced Functional Materials. Their work shows that the process overcomes a “bottleneck” in lithium-ion battery recycling technology. The researchers described a “rapid, efficient and environmentally friendly method for selective lithium recovery using microwave radiation and a readily biodegradable solvent,” according to a news release.

Past recycling methods have involved harsh acids, and alternative eco-friendly solvents like deep eutectic solvents (DESs) at times have not been as efficient and economically viable. Current recycling methods recover less than 5 percent of lithium, which is due to contamination and loss during the process.

In order to leach other metals like cobalt or nickel, both the choline chloride and the ethylene glycol have to be involved in the process, according to the researchers at Rice. The researchers submerged the battery waste material in the solvent and blasted it with microwave radiation since they knew that of the two substances only choline chloride is good at absorbing microwaves.

Microwave-assisted heating can achieve similar efficiencies like traditional oil bath heating almost 100 times faster. Using the microwave-based process, Rice found that it took 15 minutes to leach 87 percent of the lithium, which differs from the 12 hours needed to obtain the same recovery rate via oil bath heating.

“This method not only enhances the recovery rate but also minimizes environmental impact, which makes it a promising step toward deploying DES-based recycling systems at scale for selective metal recovery,” Ajayan says in the release.

Due to rise in EV production, the lithium-ion battery global market is expected to grow by over 23 percent in the next eight years, and was previously valued at over $65 billion in 2023.

“We’ve seen a colossal growth in LIB use in recent years, which inevitably raises concerns as to the availability of critical metals like lithium, cobalt and nickel that are used in the cathodes,” the study's co-author, Sohini Bhattacharyya, adds. “It’s therefore really important to recycle spent LIBs to recover these metals.”

Junichiro Kono has assumed leadership of the Smalley-Curl Institute at Rice University. Photo via Rice.edu

Rice names new leader for prestigious nanotechnology, materials science institute

take the lead

A distinguished Rice University professor has assumed the reins of a unique institute that focuses on research within nanoscience, quantum science, and materials science.

Junichiro Kono has assumed leadership of the Smalley-Curl Institute, which houses some of the world’s most accomplished researchers across fields including advanced materials, quantum magnetism, plasmonics and photonics, biophysics and bioengineering, all aspects of nanoscience and nanotechnology, and more.

“With his great track record in fostering international research talent — with student exchange programs between the U.S., Japan, Taiwan, China, Singapore and France that have introduced hundreds of students to new cultures and ways of researching science and engineering — Jun brings a wealth of experience in building cultural and technological ties across the globe,” Ramamoorthy Ramesh, executive vice president for research, says in a news release.

Kono is the Karl F. Hasselmann Professor in Engineering, chair of the Applied Physics Graduate Program and professor of electrical and computer engineering, physics and astronomy and materials science and nanoengineering, and is considered a global leader in studies of nanomaterials and light-matter interactions. He currently leads Rice’s top 10-ranked Applied Physics Graduate Program.

Under his leadership, the program is expected to double in size over. By 2029. The Smalley-Curl Institute will also add additional postdoctoral research fellowships to the current three endowed positions.

The Smalley-Curl Institute is named for Nobel Laureates Richard Smalley and Robert Curl (‘54). Earlier in his career, Kono once worked with Smalley on the physical properties of single-wall carbon nanotubes (SWCNTs), which led to the experimental discovery of the Aharonov-Bohm effect on the band structure of SWCNTs in high magnetic fields.

“I am deeply honored and excited to lead the Smalley-Curl Institute,” Kono says in a news release. “The opportunity to build upon the incredible legacy of Richard Smalley and Robert Curl is both a privilege and a challenge, which I embrace wholeheartedly. I’m really looking forward to working with the talented researchers and students at Rice University to further advance our understanding and application of nanomaterials and quantum phenomena. Together, we can accomplish great things.”

Kono succeeds Rice professor Naomi Halas as director of the institute. Halas is the Stanley C. Moore Professor of Electrical and Computer Engineering and the founding director of the Laboratory for Nanophotonics.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

How carbon capture works and the debate about whether it's a future climate solution

Energy Transition

Power plants and industrial facilities that emit carbon dioxide, the primary driver of global warming, are hopeful that Congress will keep tax credits for capturing the gas and storing it deep underground.

The process, called carbon capture and sequestration, is seen by many as an important way to reduce pollution during a transition to renewable energy.

But it faces criticism from some conservatives, who say it is expensive and unnecessary, and from environmentalists, who say it has consistently failed to capture as much pollution as promised and is simply a way for producers of fossil fuels like oil, gas and coal to continue their use.

Here's a closer look.

How does the process work?

Carbon dioxide is a gas produced by burning of fossil fuels. It traps heat close to the ground when released to the atmosphere, where it persists for hundreds of years and raises global temperatures.

Industries and power plants can install equipment to separate carbon dioxide from other gases before it leaves the smokestack. The carbon then is compressed and shipped — usually through a pipeline — to a location where it’s injected deep underground for long-term storage.

Carbon also can be captured directly from the atmosphere using giant vacuums. Once captured, it is dissolved by chemicals or trapped by solid material.

Lauren Read, a senior vice president at BKV Corp., which built a carbon capture facility in Texas, said the company injects carbon at high pressure, forcing it almost two miles below the surface and into geological formations that can hold it for thousands of years.

The carbon can be stored in deep saline or basalt formations and unmineable coal seams. But about three-fourths of captured carbon dioxide is pumped back into oil fields to build up pressure that helps extract harder-to-reach reserves — meaning it's not stored permanently, according to the International Energy Agency and the U.S. Environmental Protection Agency.

How much carbon dioxide is captured?

The most commonly used technology allows facilities to capture and store around 60% of their carbon dioxide emissions during the production process. Anything above that rate is much more difficult and expensive, according to the IEA.

Some companies have forecast carbon capture rates of 90% or more, “in practice, that has never happened,” said Alexandra Shaykevich, research manager at the Environmental Integrity Project’s Oil & Gas Watch.

That's because it's difficult to capture carbon dioxide from every point where it's emitted, said Grant Hauber, a strategic adviser on energy and financial markets at the Institute for Energy Economics and Financial Analysis.

Environmentalists also cite potential problems keeping it in the ground. For example, last year, agribusiness company Archer-Daniels-Midland discovered a leak about a mile underground at its Illinois carbon capture and storage site, prompting the state legislature this year to ban carbon sequestration above or below the Mahomet Aquifer, an important source of drinking water for about a million people.

Carbon capture can be used to help reduce emissions from hard-to-abate industries like cement and steel, but many environmentalists contend it's less helpful when it extends the use of coal, oil and gas.

A 2021 study also found the carbon capture process emits significant amounts of methane, a potent greenhouse gas that’s shorter-lived than carbon dioxide but traps over 80 times more heat. That happens through leaks when the gas is brought to the surface and transported to plants.

About 45 carbon-capture facilities operated on a commercial scale last year, capturing a combined 50 million metric tons of carbon dioxide — a tiny fraction of the 37.8 gigatonnes of carbon dioxide emissions from the energy sector alone, according to the IEA.

It's an even smaller share of all greenhouse gas emissions, which amounted to 53 gigatonnes for 2023, according to the latest report from the European Commission’s Emissions Database for Global Atmospheric Research.

The Institute for Energy Economics and Financial Analysis says one of the world's largest carbon capture utilization and storage projects, ExxonMobil’s Shute Creek facility in Wyoming, captures only about half its carbon dioxide, and most of that is sold to oil and gas companies to pump back into oil fields.

Future of US tax credits is unclear

Even so, carbon capture is an important tool to reduce carbon dioxide emissions, particularly in heavy industries, said Sangeet Nepal, a technology specialist at the Carbon Capture Coalition.

“It’s not a substitution for renewables ... it’s just a complementary technology,” Nepal said. “It’s one piece of a puzzle in this broad fight against the climate change.”

Experts say many projects, including proposed ammonia and hydrogen plants on the U.S. Gulf Coast, likely won't be built without the tax credits, which Carbon Capture Coalition Executive Director Jessie Stolark says already have driven significant investment and are crucial U.S. global competitiveness.

Houston renewable fuel company expands reach with latest acquisition

fueling up

Houston-based Freedom CNG, a provider and distributor of compressed renewable natural gas, has acquired ComTech Energy, a Canada-based provider of on-site mobile refueling for compressed renewable natural gas. The purchase price wasn’t disclosed.

The acquisition allows Freedom CNG to adopt a hub-and-spoke operational model, allowing customers to move away from fixed fueling infrastructure with low-carbon energy solutions across North America, according to a news release.

In conjunction with the deal, ComTech President James Ro has joined Freedom CNG as chief commercial and strategy officer.

“As we expand our footprint in low‑carbon fuel solutions, acquiring ComTech Energy marks an important step in enhancing our ability to deliver efficient, innovative fueling infrastructure,” Nick Kurtenbach, president and chief financial officer of Freedom CNG, said in the release. The acquisition, he added, “allows us to offer a more comprehensive suite of solutions that support the transition to cleaner energy and meet the evolving needs of our customers.”

Freedom CNG’s North American footprint now spans more than 25 fueling stations for compressed renewable natural gas and over 60 operations and maintenance sites across the U.S. and Canada.

This is the third acquisition for Freedom CNG in the last two months. It also recently acquired Colorado-based X3 CNG and Utah-based Lancer Energy, according to a representative from Freedom CNG, this summer. The company services regional trucks, buses and service vehicles, as well as heavy construction, agriculture, data centers and other sectors.

Last year, funds affiliated with alternative asset manager Apollo bought a majority stake in Freedom CNG, which was founded in 2012. The value of the deal wasn’t disclosed.

“Freedom has developed a strong portfolio of [renewable natural gas] fueling stations with meaningful growth potential driven by established relationships with blue-chip customers and attractive new development opportunities,” Apollo partner Scott Browning said in 2024.

1PointFive secures new buyer for Texas CO2 removal project​

seeing green

Houston’s Occidental Petroleum Corp., or Oxy, and its subsidiary 1PointFive have secured another carbon removal credit deal for its $1.3 billion direct air capture (DAC) project, Stratos.

California-based Palo Alto Networks has agreed to purchase 10,000 tons of carbon dioxide removal (CDR) credits over five years from the project, according to a news release.

The company joins others like Microsoft, Amazon, AT&T, Airbus, the Houston Astros and the Houston Texans that have agreed to buy CDR credits from 1Point5.

"Collaborating with 1PointFive in this carbon removal credit agreement highlights our proactive approach toward exploring innovative solutions for a greener future,” BJ Jenkins, president of Palo Alto Networks, said in the release.

The Texas-based Stratos project is slated to come online this year near Odessa. It's being developed through a joint venture with investment manager BlackRock and is designed to capture up to 500,000 metric tons of CO2 per year. The U.S Environmental Protection Agency recently approved Class VI permits for the project.

DAC technology pulls CO2 from the air at any location, not just where carbon dioxide is emitted. Under the agreement with Palo Alto Networks and others, the carbon dioxide that underlies the credits will be stored in a below-the-surface saline aquifer and won’t be used to produce oil or gas.

“We look forward to collaborating with Palo Alto Networks and using Direct Air Capture to help advance their sustainability strategy,” Michael Avery, president and general manager of 1PointFive, said in the release. “This agreement continues to build momentum for high-integrity carbon removal while furthering DAC technology to support energy development in the United States.”