A team led by M.A.S.R. Saadi and Muhammad Maksud Rahman has developed a biomaterial that they hope could be used for the “next disposable water bottle." Photo courtesy Rice University.

Collaborators from two Houston universities are leading the way in engineering a biomaterial into a scalable, multifunctional material that could potentially replace plastic.

The research was led by Muhammad Maksud Rahman, an assistant professor of mechanical and aerospace engineering at the University of Houston and an adjunct assistant professor of materials science and nanoengineering at Rice University. The team shared its findings in a study in the journal Nature Communications earlier this month. M.A.S.R. Saadi, a doctoral student in material science and nanoengineering at Rice, served as the first author.

The study introduced a biosynthesis technique that aligns bacterial cellulose fibers in real-time, which resulted in robust biopolymer sheets with “exceptional mechanical properties,” according to the researchers.

Biomaterials typically have weaker mechanical properties than their synthetic counterparts. However, the team was able to develop sheets of material with similar strengths to some metals and glasses. And still, the material was foldable and fully biodegradable.

To achieve this, the team developed a rotational bioreactor and utilized fluid motion to guide the bacteria fibers into a consistent alignment, rather than allowing them to align randomly, as they would in nature.

The process also allowed the team to easily integrate nanoscale additives—like graphene, carbon nanotubes and boron nitride—making the sheets stronger and improving the thermal properties.

“This dynamic biosynthesis approach enables the creation of stronger materials with greater functionality,” Saadi said in a release. “The method allows for the easy integration of various nanoscale additives directly into the bacterial cellulose, making it possible to customize material properties for specific applications.”

Ultimately, the scientists at UH and Rice hope this discovery could be used for the “next disposable water bottle,” which would be made by biodegradable biopolymers in bacterial cellulose, an abundant resource on Earth.

Additionally, the team sees applications for the materials in the packaging, breathable textiles, electronics, food and energy sectors.

“We envision these strong, multifunctional and eco-friendly bacterial cellulose sheets becoming ubiquitous, replacing plastics in various industries and helping mitigate environmental damage,” Rahman said the release.

The new Rice Center for Membrane Excellence, or RiCeME, will focus on membrane separation practices and advance next-generation membrane materials, which are essential in energy conversion processes. Image via Getty Images.

Rice launches new center focused on membrane technology for energy conversion

new material

Rice University announced the formation of a new center focused on developing advanced membrane materials and separation technologies for the energy transition.

Known as the Rice Center for Membrane Excellence, or RiCeME, the center will aim to secure funding to develop more efficient and sustainable membrane separation practices and advance next-generation membrane materials, which are essential in energy conversion processes.

The center, part of Rice's Water Technologies Entrepreneurship and Research, or WaTER Institute, also plans to drive water reuse and resource recovery solutions, perform bench-scale testing and pilot-scale demonstrations, and even host workforce development workshops and symposia on membrane science and technology.

The announcement was made during the Rice Global Paris Center Symposium in Paris.

RiCeME will be led by Menachem Elimelech, the Nancy and Clint Carlson Professor in Civil and Environmental Engineering and Chemical and Biomolecular Engineering at Rice. His research focuses on membrane-based processes, advanced materials and nanotechnology.

“Houston is the ideal place to drive innovation in membrane separation technologies,” Elimelech said in a news release. “Membranes are critical for energy-related separations such as fuel cells, carbon capture and water purification. Our work will enhance efficiency and sustainability in these key sectors.”

RiCeME will work on building partnerships with Houston-area industries, including oil and gas, chemical, and energy sectors, according to the release. It will also rely on interdisciplinary research by engaging faculty from civil and environmental engineering, chemical and biomolecular engineering, materials science and nanoengineering, and chemistry departments at Rice.

“Breakthroughs in membrane technology will play a crucial role in addressing energy and sustainability challenges,” Ramamoorthy Ramesh, executive vice president for research at Rice, said in a news release. “RiCeME’s interdisciplinary approach ensures that our discoveries move from the lab to real-world applications, driving innovation at the intersection of science and industry.”.

The Rice team's process is up to 10 times more effective than existing lithium-ion battery recycling. Photo by Gustavo Raskosky/Rice University

Houston scientists discover breakthrough process for lithium-ion battery recycling

researching for the future

With the rise of electric vehicles, every ounce of lithium in lithium-ion batteries is precious. A team of scientists from Rice University has figured out a way to retrieve as much as 50 percent of the material in used battery cathodes in as little as 30 seconds.

Researchers at Rice University’s Nanomaterials Laboratory led by Department of Materials Science and NanoEngineering Chair Pulickel Ajayan released the findings a new study published in Advanced Functional Materials. Their work shows that the process overcomes a “bottleneck” in lithium-ion battery recycling technology. The researchers described a “rapid, efficient and environmentally friendly method for selective lithium recovery using microwave radiation and a readily biodegradable solvent,” according to a news release.

Past recycling methods have involved harsh acids, and alternative eco-friendly solvents like deep eutectic solvents (DESs) at times have not been as efficient and economically viable. Current recycling methods recover less than 5 percent of lithium, which is due to contamination and loss during the process.

In order to leach other metals like cobalt or nickel, both the choline chloride and the ethylene glycol have to be involved in the process, according to the researchers at Rice. The researchers submerged the battery waste material in the solvent and blasted it with microwave radiation since they knew that of the two substances only choline chloride is good at absorbing microwaves.

Microwave-assisted heating can achieve similar efficiencies like traditional oil bath heating almost 100 times faster. Using the microwave-based process, Rice found that it took 15 minutes to leach 87 percent of the lithium, which differs from the 12 hours needed to obtain the same recovery rate via oil bath heating.

“This method not only enhances the recovery rate but also minimizes environmental impact, which makes it a promising step toward deploying DES-based recycling systems at scale for selective metal recovery,” Ajayan says in the release.

Due to rise in EV production, the lithium-ion battery global market is expected to grow by over 23 percent in the next eight years, and was previously valued at over $65 billion in 2023.

“We’ve seen a colossal growth in LIB use in recent years, which inevitably raises concerns as to the availability of critical metals like lithium, cobalt and nickel that are used in the cathodes,” the study's co-author, Sohini Bhattacharyya, adds. “It’s therefore really important to recycle spent LIBs to recover these metals.”

Junichiro Kono has assumed leadership of the Smalley-Curl Institute at Rice University. Photo via Rice.edu

Rice names new leader for prestigious nanotechnology, materials science institute

take the lead

A distinguished Rice University professor has assumed the reins of a unique institute that focuses on research within nanoscience, quantum science, and materials science.

Junichiro Kono has assumed leadership of the Smalley-Curl Institute, which houses some of the world’s most accomplished researchers across fields including advanced materials, quantum magnetism, plasmonics and photonics, biophysics and bioengineering, all aspects of nanoscience and nanotechnology, and more.

“With his great track record in fostering international research talent — with student exchange programs between the U.S., Japan, Taiwan, China, Singapore and France that have introduced hundreds of students to new cultures and ways of researching science and engineering — Jun brings a wealth of experience in building cultural and technological ties across the globe,” Ramamoorthy Ramesh, executive vice president for research, says in a news release.

Kono is the Karl F. Hasselmann Professor in Engineering, chair of the Applied Physics Graduate Program and professor of electrical and computer engineering, physics and astronomy and materials science and nanoengineering, and is considered a global leader in studies of nanomaterials and light-matter interactions. He currently leads Rice’s top 10-ranked Applied Physics Graduate Program.

Under his leadership, the program is expected to double in size over. By 2029. The Smalley-Curl Institute will also add additional postdoctoral research fellowships to the current three endowed positions.

The Smalley-Curl Institute is named for Nobel Laureates Richard Smalley and Robert Curl (‘54). Earlier in his career, Kono once worked with Smalley on the physical properties of single-wall carbon nanotubes (SWCNTs), which led to the experimental discovery of the Aharonov-Bohm effect on the band structure of SWCNTs in high magnetic fields.

“I am deeply honored and excited to lead the Smalley-Curl Institute,” Kono says in a news release. “The opportunity to build upon the incredible legacy of Richard Smalley and Robert Curl is both a privilege and a challenge, which I embrace wholeheartedly. I’m really looking forward to working with the talented researchers and students at Rice University to further advance our understanding and application of nanomaterials and quantum phenomena. Together, we can accomplish great things.”

Kono succeeds Rice professor Naomi Halas as director of the institute. Halas is the Stanley C. Moore Professor of Electrical and Computer Engineering and the founding director of the Laboratory for Nanophotonics.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

DOE proposes cutting $1.2 billion in funding for hydrogen hub

funding cuts

The U.S. Department of Energy has proposed cutting $1.2 billion in funding for the HyVelocity Gulf Coast Hydrogen Hub, a clean energy project backed by AES, Air Liquide, Chevron, ExxonMobil, Mitsubishi Power Americas and Ørsted.

The HyVelocity project, which would produce clean hydrogen, appears on a new list of proposed DOE funding cancellations. The list was obtained by Latitude Media.

As of November, HyVelocity had already received $22 million of the potential $1.2 billion in DOE funding.

Other than the six main corporate backers, supporters of HyVelocity include the Center for Houston’s Future, Houston Advanced Research Center, Port Houston, University of Texas at Austin, Shell, the Texas governor’s office, Texas congressional delegation, and the City of Fort Worth.

Kristine Cone, a spokeswoman for GTI Energy, the hub’s administrator, told EnergyCapital that it hadn’t gotten an update from DOE about the hub’s status.

The list also shows the Magnolia Sequestration Hub in Louisiana, being developed by Occidental Petroleum subsidiary 1PointFive, could lose nearly $19.8 million in federal funding and the subsidiary’s South Texas Direct Air Capture (DAC) Hub on the King Ranch in Kleberg County could lose $50 million. In September, 1Point5 announced the $50 million award for its South Texas hub would be the first installment of up to $500 million in federal funding for the project.

Other possible DOE funding losses for Houston-area companies on the list include:

  • A little over $100 million earmarked for Houston-based BP Carbon Solutions to develop carbon storage projects
  • $100 million earmarked for Dow to produce battery-grade solvents for lithium-ion batteries. Dow operates chemical plants in Deer Park and LaPorte
  • $39 million earmarked for Daikin Comfort Technologies North America to produce energy-efficient heat pumps. The HVAC company operates the Daikin Texas Technology Park in Waller
  • Nearly $6 million earmarked for Houston-based Baker Hughes Energy Transition to reduce methane emissions from flares
  • $3 million earmarked for Spring-based Chevron to explore development of a DAC hub in Northern California
  • Nearly $2.9 million earmarked for Houston-based geothermal energy startup Fervo Energy’s geothermal plant in Utah

Houston ranks No. 99 out of 100 on new report of greenest U.S. cities

Sustainability Slide

Houstonians may be feeling blue about a new ranking of the greenest cities in the U.S.

Among the country’s 100 largest cities based on population, Houston ranks 99th across 28 key indicators of “green” living in a new study from personal finance website WalletHub. The only city with a lower ranking is Glendale, Arizona. Last year, Houston landed at No. 98 on the WalletHub list.

“‘Green’ living means a choice to engage in cleaner, more sustainable habits in order to preserve the planet as much as possible,” WalletHub says.

Among the study’s ranking factors are the amount of greenhouse gas emissions per capita, the number of “smart energy” policies, and the presence of “green job” programs.

In the study, Houston received an overall score of 35.64 out of 100. WalletHub put its findings into four buckets, with Houston ranked 100th in the environment and transportation categories, 56th in the lifestyle and policy category, and 52nd in the energy sources category.

In the environment category, Houston has two big strikes against it. The metro area ranks among the 10 worst places for ozone pollution (No. 7) and year-round particle pollution (No. 8), according to the American Lung Association’s 2025 list of the most polluted cities.

In the WalletHub study, San Jose, California, earns the honor of being the country’s greenest city. It’s followed by Washington, D.C.; Oakland, California; Irvine, California; and San Francisco.

“There are plenty of things that individuals can do to adopt a green lifestyle, from recycling to sharing rides to installing solar panels on their homes,” WalletHub analyst Chip Lupo said in the report. “However, living in one of the greenest cities can make it even easier to care for the environment, due to sustainable laws and policies, access to locally grown produce, and infrastructure that allows residents to use vehicles less often. The greenest cities also are better for your health due to superior air and water quality.”