moving in

Dow digs up new office space in Houston's Energy Corridor

Dow will occupy nearly two-thirds of office space at Midway's CityCentre Six office tower that's currently being built in the Energy Corridor. Photo courtesy of Midway

Dow Chemical has signed up to be the anchor tenant at the CityCentre Six office tower under construction in Houston’s Memorial City area.

Dow will occupy nearly two-thirds (65 percent) of the 308,000 square feet of office space at the 19-story building, or about 200,000 square feet. The company will relocate employees there from its Houston Dow Center offices at Enclave Plaza in the Energy Corridor.

The current lease expires in 2026. Dow has leased the Energy Corridor space for 15 years.

Houston-based real estate investor and developer Midway recently broke ground on the $87.5 million, 320,000-square-foot CityCentre Six tower, which will be adjacent to the headquarters of Marathon Oil.

“Dow’s commitment as the anchor tenant has been a driving force behind the project’s strong momentum and underscores the strong leasing demand for CityCentre office space, which remains 100 percent leased,” says Chris Seckinger, vice president of investment and development at Midway. “Their presence not only confirms the tower’s status as a premier business destination but also reflects the confidence leading enterprises have in our vision for the district.”

Photo courtesy of Midway

The new tower, set to be completed in 2026, is one of the latest additions to the 47-acre CityCentre mixed-use development.

“Our plans for CityCentre’s north site have been in the works for almost a decade, and CityCentre Six is a significant step towards realizing our long-term vision for the development,” Seckinger said in a January 2024 news release.

Midway’s CityCentre Seven, a six-story office building and hotel, is also under construction at the mixed-use development. The Four Points by Sheraton Houston West hotel currently occupies the site.

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News