Axel-Pierre Bois, XGS Energy's Chief Technology Officer. Photo courtesy XGS Energy

Challenges in the energy transition often center around two questions: Where will organizations find the resources? And how will projects be financed?

XGS Energy's next-gen closed-loop geothermal well architecture addresses both issues head-on. The California-based company saw massive growth in the Houston market last year and recently completed a 100-meter field demonstration in central Texas, marking a major milestone for its technology's commercialization and potential for scale.

In an interview with EnergyCapital, Axel-Pierre Bois, XGS's Chief Technology Officer, shares what drew him to the geothermal space, why XGS is expanding in Houston and what the company's plans are for the year ahead.

How does XGS Energy's technology address the biggest challenges in geothermal energy?

XGS Energy is developing a geothermal system that decouples geothermal energy from its traditional dependence on water and geology to deliver affordable, clean energy anywhere there is hot rock.

Historically, geothermal resources have been hard to locate, as conventional systems require the overlap of hot rock, porous and permeable geology, and abundant water to produce energy, limiting their potential to a few select hot spots worldwide. Instead of relying on an underground fracture network that drives the geology and water requirements, the base component of XGS’s system is a single well, in which fluid is pumped to a hot rock resource and then returned to the surface through a tube-in-shell design, creating a sealed, closed loop. This allows XGS to produce geothermal energy anywhere where there is hot rock, unlocking terawatt-scale potential in the U.S. alone.

Geothermal systems have also struggled to secure project financing, as many systems have historically faced high levels of unplanned cost risk due to factors including water loss and production uncertainty. XGS’s sealed, closed-loop system ensures that it can provide reliable, predictable electricity throughout its lifespan. XGS also boosts the cost-competitiveness of its system through our major innovation, a proprietary thermally conductive materials system that is installed downhole around each well, increasing the heat transferred to the closed-loop system by 30-50%.

What has drawn you to a career in the geothermal energy space?

I have been in the subsurface industry for over 30 years, developing technical solutions for companies in the fields of geosciences, underground storage, upstream oil and gas, and geothermal heat harvesting to help improve their overall economic, ethical and environmental footprints. In 2009, I founded Curistec, a technology company providing research, engineering and technical services for geomechanics, wellbore integrity, well abandonment, cement design and cement and rock testing. A few years back, Curistec assisted with the Iceland Deep Drilling Project, helping to develop cement formulations for superhot geothermal well applications to enable drilling in high-temperature environments. As I looked toward the future, it became clear that next-generation geothermal technologies would transform the geothermal energy industry and open new markets worldwide. Curistec had been working closely with the XGS Energy team as technology partners for several years, so joining the team directly to help shape the technology development was an exciting opportunity to help develop and deploy a new system to unlock the full terawatt-scale potential of geothermal energy.

Tell us about the 100-meter field demonstration in central Texas completed in 2024 — what all did you and your team learn from the test?

Our 100-meter field demonstration in central Texas marked a significant step in our progress toward deploying geothermal energy in a commercial setting. With this field operation, we successfully demonstrated our ability to mix, pump and place our thermally conductive materials system at a commercial scale, using off-shelf tools and technologies. This was a significant milestone, taking us from theoretical models and laboratory tests to field-scale operations, proving that our novel geothermal system is operationally viable in real-world well conditions.

The completion of the Texas field demonstration advanced XGS into the new wave of geothermal innovators that are putting real steel in the ground. In 2024, we kicked off construction at our commercial-scale demonstration in California and are excited to share updates in the year ahead.

Last year, XGS Energy leased over 10,000 square feet of office space in Memorial City. How has Houston's business community and opportunities benefitted the company?

Houston, the epicenter of the oil and gas industry, has become a hub of energy innovation, offering attractive incentives for growing companies like XGS. The region’s workforce, which is home to some of the best subsurface engineers and operational talent in the energy sector, was a key factor for XGS when we were planning our operational roadmap. This expertise, paired with proximity to our partners in the field services industries, like cementing and drilling, is both a practical and tactical advantage for XGS.

We’ve built a strong technical and operational team here at XGS, with experience from the oil and gas industry, utilities and power project developers. XGS is planning for continued growth in the Houston area, leveraging the region’s leading engineering and operational workforce and its intensifying interest in supporting the energy transition.

What are XGS Energy's goals for 2025?

In 2024, the XGS Energy team made significant progress toward our goal of providing clean, round-the-clock energy with our solid-state geothermal system. In 2025, XGS Energy will be focused on deploying its geothermal system at a commercial scale, starting with the completion of our full-scale prototype in California. XGS will also continue accelerating our commercial traction, expanding our already robust and highly differentiated geothermal resource evaluation toolkit, advancing our global project pipeline, and growing our team to strengthen our operational capability and capacity.

XGS has leased 10,000 square feet of office space in Houston. Photo via Getty Images

California geothermal co. grows C-suite, grows presence in Houston

making moves

A geothermal company with its headquarters in Palo Alto, California, has named new members of its C-suite and, at the same time, has expanded its operational footprint in Houston.

XGS Energy promoted Axel-Pierre Bois to CTO and Lucy Darago to chief commercial officer. Darago is based in Austin, and Bois, from France, lists his role as based in Houston on LinkedIn. Both have worked at XGS since February of last year.

“Axel and Lucy’s proven operational excellence and technical knowledge has helped propel XGS forward as we enter our next phase of growth,” Josh Prueher, CEO of XGS Energy, says in a news release. “I’m thrilled to have them both join XGS’ C-suite and have their support as we continue to grow our team, further advance our next-generation geothermal technology, and invest in our multi-gigawatt project pipeline.”

The news coincides with XGS's recent lease of over 10,000 square feet of office space in Memorial City. The company reports it plans to continue growth in the Houston region, "leveraging the region’s leading engineering and operational workforce and intensifying energy transition activity," reads the statement.

Bois was promoted from senior vice president of technology and has over 30 years of experience in geomechanics, wellbore integrity, completions design, and cement and rock testing. He previously founded and served as CEO of CURISTEC, a technical advisory firm providing services in oil and gas, geothermal, and geologic storage industries.

“We have developed a unique and proprietary approach to boosting the heat-harvesting potential of geothermal wells that is ready for commercial deployment in a range of environments today. I am excited to continue to grow our incredible team of scientists and engineers working on this important technology,” Bois says in the release. “We’re at the beginning of what this technology can unlock when it comes to supplying reliable, clean, and affordable geothermal energy globally.”

In her previous role as vice president of strategy, Darago led XGS’s financing strategy, which included a $20 million Series A expansion announced earlier this year. As CCO, she will oversee XGS’ global project development and will maintain a leading role in corporate affairs.

“It’s an exciting time to bring XGS’ technology to market. Demand for carbon-free baseload energy is at a record high, and the XGS system’s ability to unlock geothermal in more places, in a predictable and bankable way, is tailor-made for this moment,” Darago adds. “I am honored by our team and Board’s trust and look forward to helping drive the next stage of growth for XGS.”

XGS Energy promoted Axel-Pierre Bois to CTO and Lucy Darago to chief commercial officer. Image courtesy of XGS

Dow will occupy nearly two-thirds of office space at Midway's CityCentre Six office tower that's currently being built in the Energy Corridor. Photo courtesy of Midway

Dow digs up new office space in Houston's Energy Corridor

moving in

Dow Chemical has signed up to be the anchor tenant at the CityCentre Six office tower under construction in Houston’s Memorial City area.

Dow will occupy nearly two-thirds (65 percent) of the 308,000 square feet of office space at the 19-story building, or about 200,000 square feet. The company will relocate employees there from its Houston Dow Center offices at Enclave Plaza in the Energy Corridor.

The current lease expires in 2026. Dow has leased the Energy Corridor space for 15 years.

Houston-based real estate investor and developer Midway recently broke ground on the $87.5 million, 320,000-square-foot CityCentre Six tower, which will be adjacent to the headquarters of Marathon Oil.

“Dow’s commitment as the anchor tenant has been a driving force behind the project’s strong momentum and underscores the strong leasing demand for CityCentre office space, which remains 100 percent leased,” says Chris Seckinger, vice president of investment and development at Midway. “Their presence not only confirms the tower’s status as a premier business destination but also reflects the confidence leading enterprises have in our vision for the district.”

Photo courtesy of Midway

The new tower, set to be completed in 2026, is one of the latest additions to the 47-acre CityCentre mixed-use development.

“Our plans for CityCentre’s north site have been in the works for almost a decade, and CityCentre Six is a significant step towards realizing our long-term vision for the development,” Seckinger said in a January 2024 news release.

Midway’s CityCentre Seven, a six-story office building and hotel, is also under construction at the mixed-use development. The Four Points by Sheraton Houston West hotel currently occupies the site.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

CenterPoint launches $65B capital improvement plan

grid growth

To support rising demand for power, Houston-based utility company CenterPoint Energy has launched a $65 billion, 10-year capital improvement plan.

CenterPoint said that in its four-state service territory — Texas, Indiana, Minnesota and Ohio — the money will go toward building and maintaining a “resilient” electric grid and a safe natural gas system.

In the Houston area, CenterPoint forecasts peak demand for electricity will increase nearly 50 percent, to almost 31 gigawatts, by 2031 and peak demand will climb to almost 42 gigawatts by the middle of the next decade. CenterPoint provides energy to nearly 2.8 million customers in the Houston area.

In addition to the $65 billion capital improvement budget, which is almost 40 percent higher than the 2021 budget, CenterPoint has identified more than $10 billion in investment opportunities that could further improve electric and natural gas service.

“Every investment we make at CenterPoint is in service of our approximately seven million metered customers we have the privilege to serve,” CenterPoint president and CEO Jason Wells said in a news release.

“With our customer-driven yet conservative approach to growth, we continue to see significant potential for even more investment for the benefit of our customers that is not yet reflected in our new plan,” he added.

UH projects propose innovative reuse of wind turbines and more on Gulf Coast

Forward-thinking

Two University of Houston science projects have been selected as finalists for the Gulf Futures Challenge, which will award a total of $50 million to develop ideas that help benefit the Gulf Coast.

Sponsored by the National Academies of Science, Engineering and Medicine’s Gulf Coast Research Program and Lever for Change, the competition is designed to spark innovation around problems in the Gulf Coast, such as rising sea levels, pollution, energy security, and community resiliency. The two UH projects beat out 162 entries from organizations based in Alabama, Florida, Louisiana, Mississippi, and Texas.

“Being named a finalist for this highly competitive grant underscores the University of Houston’s role as a leading research institution committed to addressing the most pressing challenges facing our region,” said Claudia Neuhauser, vice president for research at UH.

“This opportunity affirms the strength of our faculty and researchers and highlights UH’s capacity to deliver innovative solutions that will ensure the long-term stability and resilience of the Gulf Coast.”

One project, spearheaded by the UH Repurposing Offshore Infrastructure for Continued Energy (ROICE) program, is studying ways to use decommissioned oil rig platforms in the Gulf of Mexico as both clean energy hydrogen power generators as well a marine habitats. There are currently thousands of such platforms in the Gulf.

The other project involves the innovative recycling of wind turbines into seawall and coastal habitats. Broken and abandoned wind turbine blades have traditionally been thought to be non-recyclable and end up taking up incredible space in landfills. Headed by a partnership between UH, Tulane University, the University of Texas Health Science Center at Houston, the city of Galveston and other organizations, this initiative could vastly reduce the waste associated with wind farm technology.

wind turbine recycled for Gulf Coast seawall.Wind turbines would be repurposed into seawalls and more. Courtesy rendering

"Coastal communities face escalating threats from climate change — land erosion, structural corrosion, property damage and negative health impacts,” said Gangbing Song, Moores Professor of Mechanical and Aerospace Engineering at UH and the lead investigator for both projects.

“Leveraging the durability and anti-corrosive properties of these of decommissioned wind turbine blades, we will build coastal structures, improve green spaces and advance the resilience and health of Gulf Coast communities through integrated research, education and outreach.”

The two projects have received a development grant of $300,000 as a prize for making it to the finals. When the winner are announced in early 2026, two of the projects will net $20 million each to bring their vision to life, with the rest earning a consolation prize of $875,000, in additional project support.

In the event that UH doesn't grab the grand prize, the school's scientific innovation will earn a guaranteed $1.75 million for the betterment of the Gulf Coast.

---

This article originally appeared on CultureMap.com.

ERCOT steps up grid innovation efforts to support growing power demand

grid boost

As AI data centers gobble up more electricity, the Electric Reliability Council of Texas (ERCOT) — whose grid supplies power to 90 percent of Texas — has launched an initiative to help meet challenges presented by an increasingly strained power grid.

ERCOT, based in the Austin suburb of Taylor, said its new Grid Research, Innovation, and Transformation (GRIT) initiative will tackle research and prototyping of emerging technology and concepts to “deeply understand the implications of rapid grid and technology evolution, positioning ERCOT to lead in the future energy landscape.”

“As the ERCOT grid continues to rapidly evolve, we are seeing greater interest from industry and academia to collaborate on new tools and innovative technologies to advance the reliability needs of tomorrow’s energy systems,” ERCOT President and CEO Pablo Vegas said in a news release. “These efforts will provide an opportunity to share ideas and bring new innovations forward, as we work together to lead the evolution and expansion of the electric power grid.”

In conjunction with the GRIT initiative, ERCOT launched the Research and Innovation Partnership Engagement (RIPE) program. The program enables partners to work with ERCOT on developing technology aimed at resolving grid challenges.

To capitalize on ideas for grid improvements, the organization will host its third annual ERCOT Innovation Summit on March 31 in Round Rock. The summit “brings together thought leaders across the energy research and innovation ecosystem to explore solutions that use innovation to impact grid transformation,” ERCOT said.

“As the depth of information and industry collaboration evolves, we will continue to enhance the GRIT webpages to create a dynamic and valuable resource for the broader industry to continue fostering strong collaboration and innovation with our stakeholders,” said Venkat Tirupati, ERCOT’s vice president of DevOps and grid transformation.

ERCOT’s GRIT initiative comes at a time when the U.S. is girding for heightened demand for power, due in large part to the rise of data centers catering to the AI boom.

A study released in 2024 by the Electric Power Research Institute (EPRI) predicted electricity for data centers could represent as much as 9.1 percent of total power usage in the U.S. by 2030. According to EPRI, the share of Texas electricity consumed by data centers could climb from 4.6 percent in 2023 to almost 11 percent by 2030.

A report issued in 2024 by the federal government’s Lawrence Berkeley National Laboratory envisions an even faster increase in data-center power usage. The report projected data centers will consume as much as 12 percent of U.S. electricity by 2028, up from 4.4 percent in 2023.

In 2023, the EPRI study estimated, 80 percent of the U.S. electrical load for data centers was concentrated in two states, led by Virginia and Texas. The University of Texas at Austin’s Center for Media Engagement reported in July that Texas is home to 350 data centers, second only to Virginia.

“The U.S. electricity sector is working hard to meet the growing demands of data centers, transportation electrification, crypto-mining, and industrial onshoring, while balancing decarbonization efforts,” David Porter, EPRI’s vice president of electrification and sustainable energy strategy, said. “The data center boom requires closer collaboration between large data center owners and developers, utilities, government, and other stakeholders to ensure that we can power the needs of AI while maintaining reliable, affordable power to all customers.”