Axel-Pierre Bois, XGS Energy's Chief Technology Officer. Photo courtesy XGS Energy

Challenges in the energy transition often center around two questions: Where will organizations find the resources? And how will projects be financed?

XGS Energy's next-gen closed-loop geothermal well architecture addresses both issues head-on. The California-based company saw massive growth in the Houston market last year and recently completed a 100-meter field demonstration in central Texas, marking a major milestone for its technology's commercialization and potential for scale.

In an interview with EnergyCapital, Axel-Pierre Bois, XGS's Chief Technology Officer, shares what drew him to the geothermal space, why XGS is expanding in Houston and what the company's plans are for the year ahead.

How does XGS Energy's technology address the biggest challenges in geothermal energy?

XGS Energy is developing a geothermal system that decouples geothermal energy from its traditional dependence on water and geology to deliver affordable, clean energy anywhere there is hot rock.

Historically, geothermal resources have been hard to locate, as conventional systems require the overlap of hot rock, porous and permeable geology, and abundant water to produce energy, limiting their potential to a few select hot spots worldwide. Instead of relying on an underground fracture network that drives the geology and water requirements, the base component of XGS’s system is a single well, in which fluid is pumped to a hot rock resource and then returned to the surface through a tube-in-shell design, creating a sealed, closed loop. This allows XGS to produce geothermal energy anywhere where there is hot rock, unlocking terawatt-scale potential in the U.S. alone.

Geothermal systems have also struggled to secure project financing, as many systems have historically faced high levels of unplanned cost risk due to factors including water loss and production uncertainty. XGS’s sealed, closed-loop system ensures that it can provide reliable, predictable electricity throughout its lifespan. XGS also boosts the cost-competitiveness of its system through our major innovation, a proprietary thermally conductive materials system that is installed downhole around each well, increasing the heat transferred to the closed-loop system by 30-50%.

What has drawn you to a career in the geothermal energy space?

I have been in the subsurface industry for over 30 years, developing technical solutions for companies in the fields of geosciences, underground storage, upstream oil and gas, and geothermal heat harvesting to help improve their overall economic, ethical and environmental footprints. In 2009, I founded Curistec, a technology company providing research, engineering and technical services for geomechanics, wellbore integrity, well abandonment, cement design and cement and rock testing. A few years back, Curistec assisted with the Iceland Deep Drilling Project, helping to develop cement formulations for superhot geothermal well applications to enable drilling in high-temperature environments. As I looked toward the future, it became clear that next-generation geothermal technologies would transform the geothermal energy industry and open new markets worldwide. Curistec had been working closely with the XGS Energy team as technology partners for several years, so joining the team directly to help shape the technology development was an exciting opportunity to help develop and deploy a new system to unlock the full terawatt-scale potential of geothermal energy.

Tell us about the 100-meter field demonstration in central Texas completed in 2024 — what all did you and your team learn from the test?

Our 100-meter field demonstration in central Texas marked a significant step in our progress toward deploying geothermal energy in a commercial setting. With this field operation, we successfully demonstrated our ability to mix, pump and place our thermally conductive materials system at a commercial scale, using off-shelf tools and technologies. This was a significant milestone, taking us from theoretical models and laboratory tests to field-scale operations, proving that our novel geothermal system is operationally viable in real-world well conditions.

The completion of the Texas field demonstration advanced XGS into the new wave of geothermal innovators that are putting real steel in the ground. In 2024, we kicked off construction at our commercial-scale demonstration in California and are excited to share updates in the year ahead.

Last year, XGS Energy leased over 10,000 square feet of office space in Memorial City. How has Houston's business community and opportunities benefitted the company?

Houston, the epicenter of the oil and gas industry, has become a hub of energy innovation, offering attractive incentives for growing companies like XGS. The region’s workforce, which is home to some of the best subsurface engineers and operational talent in the energy sector, was a key factor for XGS when we were planning our operational roadmap. This expertise, paired with proximity to our partners in the field services industries, like cementing and drilling, is both a practical and tactical advantage for XGS.

We’ve built a strong technical and operational team here at XGS, with experience from the oil and gas industry, utilities and power project developers. XGS is planning for continued growth in the Houston area, leveraging the region’s leading engineering and operational workforce and its intensifying interest in supporting the energy transition.

What are XGS Energy's goals for 2025?

In 2024, the XGS Energy team made significant progress toward our goal of providing clean, round-the-clock energy with our solid-state geothermal system. In 2025, XGS Energy will be focused on deploying its geothermal system at a commercial scale, starting with the completion of our full-scale prototype in California. XGS will also continue accelerating our commercial traction, expanding our already robust and highly differentiated geothermal resource evaluation toolkit, advancing our global project pipeline, and growing our team to strengthen our operational capability and capacity.

XGS has leased 10,000 square feet of office space in Houston. Photo via Getty Images

California geothermal co. grows C-suite, grows presence in Houston

making moves

A geothermal company with its headquarters in Palo Alto, California, has named new members of its C-suite and, at the same time, has expanded its operational footprint in Houston.

XGS Energy promoted Axel-Pierre Bois to CTO and Lucy Darago to chief commercial officer. Darago is based in Austin, and Bois, from France, lists his role as based in Houston on LinkedIn. Both have worked at XGS since February of last year.

“Axel and Lucy’s proven operational excellence and technical knowledge has helped propel XGS forward as we enter our next phase of growth,” Josh Prueher, CEO of XGS Energy, says in a news release. “I’m thrilled to have them both join XGS’ C-suite and have their support as we continue to grow our team, further advance our next-generation geothermal technology, and invest in our multi-gigawatt project pipeline.”

The news coincides with XGS's recent lease of over 10,000 square feet of office space in Memorial City. The company reports it plans to continue growth in the Houston region, "leveraging the region’s leading engineering and operational workforce and intensifying energy transition activity," reads the statement.

Bois was promoted from senior vice president of technology and has over 30 years of experience in geomechanics, wellbore integrity, completions design, and cement and rock testing. He previously founded and served as CEO of CURISTEC, a technical advisory firm providing services in oil and gas, geothermal, and geologic storage industries.

“We have developed a unique and proprietary approach to boosting the heat-harvesting potential of geothermal wells that is ready for commercial deployment in a range of environments today. I am excited to continue to grow our incredible team of scientists and engineers working on this important technology,” Bois says in the release. “We’re at the beginning of what this technology can unlock when it comes to supplying reliable, clean, and affordable geothermal energy globally.”

In her previous role as vice president of strategy, Darago led XGS’s financing strategy, which included a $20 million Series A expansion announced earlier this year. As CCO, she will oversee XGS’ global project development and will maintain a leading role in corporate affairs.

“It’s an exciting time to bring XGS’ technology to market. Demand for carbon-free baseload energy is at a record high, and the XGS system’s ability to unlock geothermal in more places, in a predictable and bankable way, is tailor-made for this moment,” Darago adds. “I am honored by our team and Board’s trust and look forward to helping drive the next stage of growth for XGS.”

XGS Energy promoted Axel-Pierre Bois to CTO and Lucy Darago to chief commercial officer. Image courtesy of XGS

Dow will occupy nearly two-thirds of office space at Midway's CityCentre Six office tower that's currently being built in the Energy Corridor. Photo courtesy of Midway

Dow digs up new office space in Houston's Energy Corridor

moving in

Dow Chemical has signed up to be the anchor tenant at the CityCentre Six office tower under construction in Houston’s Memorial City area.

Dow will occupy nearly two-thirds (65 percent) of the 308,000 square feet of office space at the 19-story building, or about 200,000 square feet. The company will relocate employees there from its Houston Dow Center offices at Enclave Plaza in the Energy Corridor.

The current lease expires in 2026. Dow has leased the Energy Corridor space for 15 years.

Houston-based real estate investor and developer Midway recently broke ground on the $87.5 million, 320,000-square-foot CityCentre Six tower, which will be adjacent to the headquarters of Marathon Oil.

“Dow’s commitment as the anchor tenant has been a driving force behind the project’s strong momentum and underscores the strong leasing demand for CityCentre office space, which remains 100 percent leased,” says Chris Seckinger, vice president of investment and development at Midway. “Their presence not only confirms the tower’s status as a premier business destination but also reflects the confidence leading enterprises have in our vision for the district.”

Photo courtesy of Midway

The new tower, set to be completed in 2026, is one of the latest additions to the 47-acre CityCentre mixed-use development.

“Our plans for CityCentre’s north site have been in the works for almost a decade, and CityCentre Six is a significant step towards realizing our long-term vision for the development,” Seckinger said in a January 2024 news release.

Midway’s CityCentre Seven, a six-story office building and hotel, is also under construction at the mixed-use development. The Four Points by Sheraton Houston West hotel currently occupies the site.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Wind and solar supplied over a third of ERCOT power, report shows

power report

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA).

The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024.

Together, wind and solar supplied 36 percent of ERCOT’s electricity in the first nine months of 2025.

Heavier reliance on wind and solar power comes amid greater demand for ERCOT electricity. In the first nine months of 2025, ERCOT recorded the fastest growth in electricity demand (5 percent) among U.S. power grids compared with the same period last year, according to the report.

“ERCOT’s electricity demand is forecast to grow faster than that of any other grid operator in the United States through at least 2026,” the report says.

EIA forecasts demand for ERCOT electricity will climb 14 percent in the first nine months of 2026 compared with the same period this year. This anticipated jump coincides with a number of large data centers and cryptocurrency mining facilities coming online next year.

The ERCOT grid covers about 90 percent of Texas’ electrical load.

Micro-nuclear reactor to launch next year at Texas A&M innovation campus

nuclear pilot

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”