Chevron U.S.A. has acquired 125,000 acres in Northeast Texas and southwest Arkansas that contain a high amount of lithium. Photo via Getty Images.

Chevron U.S.A., a subsidiary of Houston-based energy company Chevron, has taken its first big step toward establishing a commercial-scale lithium business.

Chevron acquired leaseholds totaling about 125,000 acres in Northeast Texas and southwest Arkansas from TerraVolta Resources and East Texas Natural Resources. The acreage contains a high amount of lithium, which Chevron plans to extract from brines produced from the subsurface.

Lithium-ion batteries are used in an array of technologies, such as smartwatches, e-bikes, pacemakers, and batteries for electric vehicles, according to Chevron. The International Energy Agency estimates lithium demand could grow more than 400 percent by 2040.

“This acquisition represents a strategic investment to support energy manufacturing and expand U.S.-based critical mineral supplies,” Jeff Gustavson, president of Chevron New Energies, said in a news release. “Establishing domestic and resilient lithium supply chains is essential not only to maintaining U.S. energy leadership but also to meeting the growing demand from customers.”

Rania Yacoub, corporate business development manager at Chevron New Energies, said that amid heightening demand, lithium is “one of the world’s most sought-after natural resources.”

“Chevron is looking to help meet that demand and drive U.S. energy competitiveness by sourcing lithium domestically,” Yacoub said.

Ace Green Recycling Inc. will build one of India's largest battery recycling facilities and plans to develop a flagship battery recycling plant in Texas. Photo courtesy Ace Green Recycling Inc.

Houston battery recycling co. expands globally with new India facility, Africa partnership

going global

Ace Green Recycling Inc., a Houston-operated sustainable battery recycling and technology solutions provider, announced it has finalized a lease agreement for a location to build one of India's largest battery recycling facilities in Mundra, Gujarat.

The facility will expand Ace's existing Indian commercial operations, which have been recycling lithium-ion batteries since 2023, including lithium iron phosphate ("LFP") chemistries.

The deployment of Ace’s LithiumFirst LFP battery recycling technology in India will coincide with the deployment of the company's technology in Texas. Last year, the company announced it planned to develop a flagship battery recycling plant in Texas for lead and lithium-ion batteries.

Ace also plans to establish 10,000 metric tons of LFP battery recycling capacity per year in India by 2026. The Mundra LFP battery recycling facility is expected to create up to 50 jobs.

The new facility plans to use Ace's LithiumFirst technology to recycle LFP batteries at room temperature in a fully electrified hydrometallurgical process that produces no direct (or Scope 1) carbon emissions and with zero liquid and solid waste.

"Ace's innovative technology enables profitable recycling of LFP batteries, even with the current low lithium price, by recovering significant amounts of these critical minerals,” Vipin Tyagi, Chief Technology Officer of Ace, said in a news release. “We believe that our successful operational demonstration positions us for future partnerships and collaborations that will unlock the full potential of our LithiumFirst technology in this market.”

Ace will also utilize its GreenLead recovery technology to recycle lead batteries at the new recycling park. The technology is considered a more environmentally friendly alternative to conventional smelting operations.

The company also reported visiting China for possible future expansion. According to a release, it launched a facility in Taiwan last year and is developing projects in Europe and Israel, as well.

Today, the company also announced that it was tapped by Spiro, one of Africa’s largest EV battery producers, as its global preferred recycling partner. According to a release, Ace will recycle end-of-life lithium-ion batteries, including LFP batteries, and waste from Spiro's battery manufacturing facilities.

Ace Green Recycling Inc. is headquartered in Houston and Singapore.

The Rice team's process is up to 10 times more effective than existing lithium-ion battery recycling. Photo by Gustavo Raskosky/Rice University

Houston scientists discover breakthrough process for lithium-ion battery recycling

researching for the future

With the rise of electric vehicles, every ounce of lithium in lithium-ion batteries is precious. A team of scientists from Rice University has figured out a way to retrieve as much as 50 percent of the material in used battery cathodes in as little as 30 seconds.

Researchers at Rice University’s Nanomaterials Laboratory led by Department of Materials Science and NanoEngineering Chair Pulickel Ajayan released the findings a new study published in Advanced Functional Materials. Their work shows that the process overcomes a “bottleneck” in lithium-ion battery recycling technology. The researchers described a “rapid, efficient and environmentally friendly method for selective lithium recovery using microwave radiation and a readily biodegradable solvent,” according to a news release.

Past recycling methods have involved harsh acids, and alternative eco-friendly solvents like deep eutectic solvents (DESs) at times have not been as efficient and economically viable. Current recycling methods recover less than 5 percent of lithium, which is due to contamination and loss during the process.

In order to leach other metals like cobalt or nickel, both the choline chloride and the ethylene glycol have to be involved in the process, according to the researchers at Rice. The researchers submerged the battery waste material in the solvent and blasted it with microwave radiation since they knew that of the two substances only choline chloride is good at absorbing microwaves.

Microwave-assisted heating can achieve similar efficiencies like traditional oil bath heating almost 100 times faster. Using the microwave-based process, Rice found that it took 15 minutes to leach 87 percent of the lithium, which differs from the 12 hours needed to obtain the same recovery rate via oil bath heating.

“This method not only enhances the recovery rate but also minimizes environmental impact, which makes it a promising step toward deploying DES-based recycling systems at scale for selective metal recovery,” Ajayan says in the release.

Due to rise in EV production, the lithium-ion battery global market is expected to grow by over 23 percent in the next eight years, and was previously valued at over $65 billion in 2023.

“We’ve seen a colossal growth in LIB use in recent years, which inevitably raises concerns as to the availability of critical metals like lithium, cobalt and nickel that are used in the cathodes,” the study's co-author, Sohini Bhattacharyya, adds. “It’s therefore really important to recycle spent LIBs to recover these metals.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Google's $40B investment in Texas data centers includes energy infrastructure

The future of data

Google is investing a huge chunk of money in Texas: According to a release, the company will invest $40 billion on cloud and artificial intelligence (AI) infrastructure, with the development of new data centers in Armstrong and Haskell counties.

The company announced its intentions at a meeting on November 14 attended by federal, state, and local leaders including Gov. Greg Abbott who called it "a Texas-sized investment."

Google will open two new data center campuses in Haskell County and a data center campus in Armstrong County.

Additionally, the first building at the company’s Red Oak campus in Ellis County is now operational. Google is continuing to invest in its existing Midlothian campus and Dallas cloud region, which are part of the company’s global network of 42 cloud regions that deliver high-performance, low-latency services that businesses and organizations use to build and scale their own AI-powered solutions.

Energy demands

Google is committed to responsibly growing its infrastructure by bringing new energy resources onto the grid, paying for costs associated with its operations, and supporting community energy efficiency initiatives.

One of the new Haskell data centers will be co-located with — or built directly alongside — a new solar and battery energy storage plant, creating the first industrial park to be developed through Google’s partnership with Intersect and TPG Rise Climate announced last year.

Google has contracted to add more than 6,200 megawatts (MW) of net new energy generation and capacity to the Texas electricity grid through power purchase agreements (PPAs) with energy developers such as AES Corporation, Enel North America, Intersect, Clearway, ENGIE, SB Energy, Ørsted, and X-Elio.

Water demands

Google’s three new facilities in Armstrong and Haskell counties will use air-cooling technology, limiting water use to site operations like kitchens. The company is also contributing $2.6 million to help Texas Water Trade create and enhance up to 1,000 acres of wetlands along the Trinity-San Jacinto Estuary. Google is also sponsoring a regenerative agriculture program with Indigo Ag in the Dallas-Fort Worth area and an irrigation efficiency project with N-Drip in the Texas High Plains.

In addition to the data centers, Google is committing $7 million in grants to support AI-related initiatives in healthcare, energy, and education across the state. This includes helping CareMessage enhance rural healthcare access; enabling the University of Texas at Austin and Texas Tech University to address energy challenges that will arise with AI, and expanding AI training for Texas educators and students through support to Houston City College.

---

This article originally appeared on CultureMap.com.

Texas A&M's micro-nuclear reactor tops energy transition news to know

Trending News

Editor's note: The top energy transition news of November includes major energy initiatives from Texas universities and the creation of a new Carbon Measures coalition. Here are the most-read EnergyCapitalHTX stories from Nov. 1-15:

1. Micro-nuclear reactor to launch next year at Texas A&M innovation campus

Last Energy will build a 5-megawatt reactor at the Texas A&M-RELLIS campus. Photo courtesy Last Energy.

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan. Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid. Continue reading.

2. Baker Hughes to provide equipment for massive low-carbon ammonia plant

Baker Hughes will supply equipment for Blue Point Number One, a $4 billion low-carbon ammonia plant being developed in Louisiana. Photo courtesy Technip Energies.

Houston-based energy technology company Baker Hughes has been tapped to supply equipment for what will be the world’s largest low-carbon ammonia plant. French technology and engineering company Technip Energies will buy a steam turbine generator and compression equipment from Baker Hughes for Blue Point Number One, a $4 billion low-carbon ammonia plant being developed in Louisiana by a joint venture comprising CF Industries, JERA and Mitsui & Co. Technip was awarded a contract worth at least $1.1 billion to provide services for the Blue Point project. Continue reading.

3. Major Houston energy companies join new Carbon Measures coalition

The new Carbon Measures coalition will create a framework that eliminates double-counting of carbon pollution and attributes emissions to their sources. Photo via Getty Images.

Six companies with a large presence in the Houston area have joined a new coalition of companies pursuing a better way to track the carbon emissions of products they manufacture, purchase and finance. Houston-area members of the Carbon Measures coalition are Spring-based ExxonMobil; Air Liquide, whose U.S. headquarters is in Housto; Mitsubishi Heavy Industries, whose U.S. headquarters is in Houston; Honeywell, whose Performance Materials and Technologies business is based in Houston; BASF, whose global oilfield solutions business is based in Houston; and Linde, whose Linde Engineering Americas business is based in Houston. Continue reading.

4. Wind and solar supplied over a third of ERCOT power, report shows

A new report from the U.S. Energy Information Administration shows that wind and solar supplied more than 30 percent of ERCOT’s electricity in the first nine months of 2025. Photo via Unsplash.

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA). The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024. Continue reading.

5. Rice University partners with Australian co. to boost mineral processing, battery innovation

Locksley Resources will provide antimony-rich feedstocks from a project in the Mojave Desert as part of a new partnership with Rice University that aims to develop scalable methods for extracting and utilizing antimony. Photo via locksleyresources.com.au.

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage. Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Continue reading.

Energy sector AI spending is set to soar to $13B, report says

eyes on ai

Get ready for a massive increase in the amount of AI spending by oil and gas companies in the Houston area and around the country.

A new report from professional services firm Deloitte predicts AI will represent 57 percent of IT spending by U.S. oil and gas companies in 2029. That’s up from the estimated share of 23 percent in 2025.

According to the analysis, the amount of AI spending in the oil and gas industry will jump from an estimated $4 billion in 2025 to an estimated $13.4 billion in 2029—an increase of 235 percent.

Almost half of AI spending by U.S. oil and gas companies targets process optimization, according to Deloitte’s analysis of data from market research companies IDC and Gartner. “AI-driven analytics adjust drilling parameters and production rates in real time, improving yield and decision-making,” says the Deloitte report.

Other uses for AI in the oil and gas industry cited by Deloitte include:

  • Integrating infrastructure used by shale producers
  • Monitoring pipelines, drilling platforms, refineries, and other assets
  • Upskilling workers through AI-powered platforms
  • Connecting workers on offshore rigs via high-speed, real-time internet access supplied by satellites
  • Detecting and reporting leaks

The report says a new generation of technology, including AI and real-time analytics, is transforming office and on-site operations at oil and gas companies. The Trump administration’s “focus on AI innovation through supportive policies and investments could further accelerate large-scale adoption and digital transformation,” the report adds.

Chevron and ExxonMobil, the two biggest oil and gas companies based in the Houston area, continue to dive deeper into AI.

Chevron is taking advantage of AI to squeeze more insights from enormous datasets, VentureBeat reported.

“AI is a perfect match for the established, large-scale enterprise with huge datasets—that is exactly the tool we need,” Bill Braun, the company’s now-retired chief information officer, said at a VentureBeat event in May.

Meanwhile, AI enables ExxonMobil to conduct autonomous drilling in the waters off the coast of Guyana. ExxonMobil says its proprietary system improves drilling safety, boosts efficiency, and eliminates repetitive tasks performed by rig workers.

ExxonMobil is also relying on AI to help cut $15 billion in operating costs by 2027.

“There is a concerted effort to make sure that we’re really working hard to apply that new technology … to drive effectiveness and efficiency,” Darren Woods, executive chairman and CEO of ExxonMobil, said during a 2024 earnings call.