seeing green

Woodside to acquire clean ammonia project outside of Houston in  $2.4B deal

OCI broke ground on the project in 2022. Photo via oci-global.com

Woodside Energy has announced its acquiring a Beaumont, Texas, clean ammonia project that's slated to deliver its first ammonia by 2025 and lower carbon ammonia by 2026.

The agreement is for Woodside to acquire 100 percent of OCI Clean Ammonia Holding and its lower carbon ammonia project in Beaumont in an all-cash deal of approximately $2.35 billion. According to Woodside CEO Meg O’Neill, the acquisition positions Woodside as an early mover in clean ammonia within the energy transition.

“This transaction positions Woodside in the growing lower carbon ammonia market," O’Neill says in a news release. "The potential applications for lower carbon ammonia are in power generation, marine fuels and as an industrial feedstock, as it displaces higher-emitting fuels.

“Global ammonia demand is forecast to double by 2050, with lower carbon ammonia making up nearly two-thirds of total demand," she continues. “This Project exceeds our capital allocation framework targets for new energy projects. Both phases are expected to achieve an internal rate of return above 10 percent and payback of less than 10 years."

OCI broke ground on the project in 2022. It's reportedly the world’s first ammonia plant paired with auto thermal reforming with over 95 percent carbon dioxide capture.

Phase 1 of the project will have a capacity of 1.1 million tonnes per annum and is currently under construction. The first ammonia production will be derived from natural gas and is slated for 2025, with lower carbon ammonia production — derived from natural gas paired with carbon sequestration — is expected in in 2026 following commencement of CCS operations

According to the release, Phase 2 will have the capacity to abate 3.2 million tonnes per annum CO2-e, "or over 60 percent of our Scope 3 abatement target,” O’Neill explains.

Linde will source the nitrogen and lower carbon hydrogen feedstock from its feedstock facility, which is currently under construction with a targeted completion in early 2026. In the meantime, early supply of feedstock for the project will come from various suppliers including Linde. Per the release, CCS services will be provided to Linde by ExxonMobil and are expected to be available in 2026.

Trending News

A View From HETI

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Trending News